Skip to main content

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

  • 1026 Accesses

Abstract

The book deals with a fracture process in plain concrete and in fibrous concrete elements including straight steel fibres. The experimental results of numerous tests described in the scientific literature and the numerical results obtained with a novel discrete lattice model were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdul-Ahad, R.B., Aziz, O.Q.: Flexural strength of reinforced concrete T-beams with steel fibers. Cement and Concrete Composites 21, 263–268 (1999)

    Article  Google Scholar 

  • ACI Committee 544, Design considerations for steel fiber reinforced concrete. ACI Manual of Concrete Practice part 5, 544.4R-1–544.4R-18 (1999)

    Google Scholar 

  • Akkermann, J.: Rotationsverhalten von Stahlbeton-Rahmenecken. Dissertation, Universität Fridericiana zu Karlsruhe, Karlsruhe (2000)

    Google Scholar 

  • Alavizadeh-Farhang, A.: Plain and steel fibre reinforced concrete beams subjected to combined mechanical and thermal loading. PhD Thesis, Royal Institute of Technology, Stockholm, Sweden (1999)

    Google Scholar 

  • Alexander, S.D.B., Simmonds, S.H.: Punching shear tests of concrete slab-column joints containing fiber reinforcement. ACI Struct. J. 89(4), 425–432 (1992)

    Google Scholar 

  • Al-Taan, S.A., Al-Feel, J.R.: Evaluation of shear strength of fibre reinforced concrete beams. Cement and Concrete Composites 12, 87–94 (1990)

    Article  Google Scholar 

  • Al-Taan, S.A., Ezzadeen, N.A.: Flexural analysis of reinforced fibrous concrete members using the finite element metod. Computers and Structures 56(6), 1065–1072 (1995)

    Article  Google Scholar 

  • Altoubat, S.A., Roesler, J.R., Lange, D.A., Rieder, K.-A.: Simplified method for concrete pavement design with discrete structural fibers. Construction and Building Materials 22, 384–393 (2008)

    Article  Google Scholar 

  • Altun, F., Haktanir, T., Ari, K.: Effects of steel fiber addition on mechanical properties of concrete and RC beams. Constructuion and Building Materials 21, 654–661 (2007)

    Article  Google Scholar 

  • Armelin, H.S., Banthia, B.: Predicting the flexural postcracking performance of steel fiber reinforced concrete from the pullout of single fibers. ACI Materials Journal 94(1), 18–31 (1997)

    Google Scholar 

  • Asferg, P.N., Poulsen, P.N., Nielsen, L.O.: Modelling of crack propagation in concrete applying the XFEM. In: Meschke, G., de Borst, R., Mang, H., Bicanic, N. (eds.) Computational Modelling of Concrete Structures, EURO-C, pp. 33–42. Taylor and Francis, Abington (2006)

    Google Scholar 

  • Ashour, S.A., Hasanain, G.S., Wafa, F.F.: Shear behavior of high-strength fiber reinforced concrete beams. ACI Struct. J. 89(2), 176–184 (1992)

    Google Scholar 

  • ASTM C1018-97 Standard test method for flexural toughness and first-crack strength of fiber-reinforced concrete (1997)

    Google Scholar 

  • Atis, C.D.: High volume fly ash abrasion resistant concrete. J. Mater. Civil Eng. 14(3), 274–277 (2002)

    Article  Google Scholar 

  • Atis, C.D.: High-volume fly ash concrete with high strength and low drying shrinkage. J. Mater. Civil Eng. 15(4), 153–156 (2003)

    Article  Google Scholar 

  • Atis, C.D.: Carbonation-porosity-strength model for fly ash concrete. J. Mater Civil Eng. 16(1), 91–94 (2004)

    Article  Google Scholar 

  • Atis, C.D., Karahan, O.: Properties of steel fiber reinforced fly ash concrete. Construction and Building Materials 23(1), 392–399 (2009)

    Article  Google Scholar 

  • Balaguru, P., Shah, S.P.: Fiber reinforced cement composites. McGraw-Hill, USA (1992)

    Google Scholar 

  • Balaguru, P., Foden, A.: properties of fiber reinforced structural lightweight concrete. ACI Materials Journal 93(1), 63–78 (1996)

    Google Scholar 

  • Baledran, R.V., Zhou, F.P., Nadeem, A., Leung, A.Y.T.: Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete. Building and Environment 37, 1361–1367 (2002)

    Article  Google Scholar 

  • Banthia, N.: A Study of some factors affecting the fibre-matrix bond in steel fibre. Can. J. Civil Eng. 17(4), 610–620 (1990)

    Article  Google Scholar 

  • Bazant, Z.P., Bhat, P.D.: Endochronic theory of inelasticity and failure of concrete. ASCE Journal of Engineering Mechanics 102, 701–722 (1976)

    Google Scholar 

  • Bazant, Z.P., Shieh, C.L.: Endochronic model for nonlinear triaxial behaviour of concrete. Nucl. Engng. Des. 47, 305–315 (1978)

    Article  Google Scholar 

  • Bazant, Z.P.: Mechanics of distributed cracking. Appl. Mech. Rev. 26, 675–705 (1986)

    Article  Google Scholar 

  • Bazant, Z.P., Ozbolt, J.: Non-local microplane model for fracture, damage and size effect in structures. ASCE Journal of Engineering Mechanics 116, 2485–2505 (1990)

    Article  Google Scholar 

  • Bazant, Z.P., Schell, W.F.: Fatigue fracture of high-strength concrete and size effect. ACI Mater. J. 5, 472–478 (1993)

    Google Scholar 

  • Bazant, Z.P., Jirasek, M.: Nonlocal integral formulations of plasticity and damage: survey of progress. J. Engng. Mech. 128(11), 1119–1149 (2002)

    Article  Google Scholar 

  • Bazant, Z.P.: Scaling of structural strength. Hermes-Penton, London (2003)

    Google Scholar 

  • Beghini, A., Bazant, Z.P., Zhou, Y., Gouirand, O., Caner, F.C.: Microplane model M5f for multiaxial behaviour and fracture of fibre-reinforced concrete. J. Engng. Mech. 133(1), 66–75 (2007)

    Article  Google Scholar 

  • Belytschko, T., Moes, N., Usui, S., Parimi, C.: Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering 50(4), 993–1013 (2001)

    Article  MATH  Google Scholar 

  • Bentur, A., Mindess, S.: Fiber reinforced cementitious composites. Elsevier Applied Science, New York (1990)

    Google Scholar 

  • Billington, S.L.: Alternative approaches to simulating the performance of ductile fibre-reinforced cement-based materials in structural applications. In: Bicanic, N., de Borst, R., Mang, H., Meschke, G. (eds.) Computational Modelling of Concrete Structures, pp. 15–29. Taylor and Francis, Abington (2010)

    Google Scholar 

  • Bobinski, J., Tejchman, J.: Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity. Computers and Concrete 4, 433–455 (2004)

    Google Scholar 

  • Bobinski, J., Tejchman, J.: Modelling of concrete behaviour with a non-local con-tinuum damage approach. Archives of Hydro-Engineering and Environmental Mechanics 52(2), 85–102 (2005)

    Google Scholar 

  • Bobinski, J., Tejchman, J.: Modelling of size effects in concrete using elasto-plasticity with non-local softening. Archives of Civil Engineering 52(1), 7–35 (2006a)

    Google Scholar 

  • Bobinski, J., Tejchman, J.: Modelling of strain localization in quasi-brittle materials with coupled elasto-plastic-damage model. J. Theoretical and Applied Mechanics 44(4), 767–782 (2006b)

    Google Scholar 

  • Bobinski, J., Tejchman, J.: Quasi-static crack propagation in concrete with cohesive elements under mixed-mode conditions. In: Schrefler, B.A., Perego, U. (eds.) Proc. 8th Worls Congress on Computational Mechanics WCCM 2008, Venice, vol. 30.06-4.06, pp. 6–4 (2008)

    Google Scholar 

  • Bolander, J.E., Saito, S.: Discrete modeling of short-fiber reinforcement in cementitious composites. Adv. Cem. Based Mater. 6, 76–86 (1997)

    Article  Google Scholar 

  • Bolander, J.E., Sukumar, N.: Irregular lattice model for quasi-static crack propagation. Phys. Rev. B 71, 94106 (2005)

    Article  Google Scholar 

  • Bonzel, J., Dahms, J.: Schlagfestigkeit von faserbewehrten Beton. Beton 31 (1981)

    Google Scholar 

  • Bonzel, J., Schmidt, M.: Verteilung und Orientierung von Stahlfäsern im Beton und ihrer Einfluss auf die Eigenschaften von Stahlfaserbeton. Betontechnische Berichte (1984)

    Google Scholar 

  • Bui, H.D.: Failure mechanics of fibre-reinforced concrete and pre-damage structures. Brite-Euram Project, P-89-3275, Task Report 3, EDF, Paris (1991)

    Google Scholar 

  • Burt, N.J., Dougill, J.W.: Progressive failure in a model heterogeneous medium. ASCE Journal of Engineering Mechanics 103, 365–376 (1977)

    Google Scholar 

  • Caballero, A., Carol, I., Lopez, C.M.: New results in 3d meso-mechanical analysis of concrete specimens using interface elements. In: Meschke, G., de Borst, R., Mang, H., Bicanic, N. (eds.) Computational Modelling of Concrete Structures, EURO-C, pp. 43–52. Taylor and Francis, Abington (2006)

    Google Scholar 

  • Cachim, P.B.: Experimental and numerical analysis of the behaviour of structural concrete under fatigue loading with applications to concrete pavements. PhD Thesis, Faculty of Engineering of the University of Porto (1999)

    Google Scholar 

  • Cachim, P.B., Figueiras, J.A., Pereira, P.A.A.: Fatigue behavior of fiber-reinforced concrete in compression. Cement & Concrete Composites 24, 211–217 (2002)

    Article  Google Scholar 

  • Campione, G., Mendola, L.L., Papia, M.: Flexural behaviour of concrete corbels containing steel fibers or wrapped with FRP sheets. Materials and Structures 38, 617–625 (2005a)

    Google Scholar 

  • Campione, G., Cucchiara, C., La Mendola, L., Papia, M.: Steel–concrete bond in lightweight fiber reinforced concrete under monotonic and cyclic actions. Engineering Structures 27, 881–890 (2005b)

    Article  Google Scholar 

  • Canova, P., Rossi, P., Schaller, I.: Can steel fibers replace transverse reinforcements in reinforced concrete beams. ACI Materials Journal 94(5), 341–354 (1997)

    Google Scholar 

  • Carol, I., López, C.M., Roa, O.: Micromechanical analysis of quasi-brittle materials using fracture-based interface elements. Int. J. Numer. Methods Eng. 52, 193–215 (2001)

    Article  Google Scholar 

  • Casanova, P., Rossi, P.: Analysis and design of steel fibre reinforced concrete beams. ACI Structural Journal 94(5), 595–602 (1997)

    Google Scholar 

  • Chang, D.I., Chai, W.K.: Flexural fracture and fatigue behavior of steel-fiber-reinforced concrete structures. Nucl. Eng. Des. 156, 201–207 (1995)

    Article  Google Scholar 

  • Chen, E.: Non-local effects on dynamic damage accumulation in brittle solids, I. J. Num. Anal. Meth. Geomech. 23, 1–21 (1999)

    Article  MATH  Google Scholar 

  • Chen, J., Yuan, H., Kalkhof, D.: A nonlocal damage model for elastoplastic materials based on gradient plasticity theory, Report Nr. 01-13, Paul Scherrer Institut., 1, 13, 1-130 (2001)

    Google Scholar 

  • Chenkui, H., Guofan, Z.: Properties of steel fibre reinforced concrete containing larger coarse aggregate. Cement and Concrete Composite 17, 199–206 (1995)

    Article  Google Scholar 

  • Chunxiang, Q., Patnaikuni, I.: Properties of high strength fiber-reinforced concrete beams in bending. Cement and Concrete Composites 21, 73–81 (1999)

    Article  Google Scholar 

  • Cornelissen, H.A.W.: Fatigue failure of concrete in tension. Heron 29(4), 68 (1984)

    Google Scholar 

  • Chuang, E., Ulm, F.-J.: Two-phase composite model for high performance cementitious composites. J. Engineering Mechanics 128(12), 1314–1323 (2002)

    Article  Google Scholar 

  • Chung, J.W., Ross, A., Hosson, J.T.M.: Fracture of disordered three-dimensional spring networks: a computer simulation technology. Physical Review B 54(21), 15095–15100 (1996)

    Article  Google Scholar 

  • Cusatis, G., Bazant, Z.P., Cedolin, L.: Confinement-shear lattice model for concrete damage in tension and compression: I. theory. ASCE Journal of Engineering Mechanics 129(12), 1439–1448 (2003)

    Article  Google Scholar 

  • Cusatis, G., Schauffert, E.A., Pelessone, D., O’Daniel, J.L., Marangi, P., Stacchini, M., Savoia, M.: Lattice discrete particle model for fiber reinforced concrete with application to the numerical simulation of armoring systems. In: Bicanic, N., de Borst, R., Mang, H., Meschke, G. (eds.) Computational Modelling of Concrete Structures, pp. 291–300. Taylor and Francis, Abington (2010)

    Google Scholar 

  • D’Addetta, G.A., Kun, F., Ramm, E.: In: the application of a discrete model to the fracture process of cohesive granular materials. Granular Matter 4, 77–90 (2002)

    Article  MATH  Google Scholar 

  • David, A.F., Naaman, A.E.: Stress-strain properties of fiber reinforced mortar in compression. ACI Materials Journal 475–483 (1985)

    Google Scholar 

  • DBV-Merkblatt: Technologie des Stahlfaserbetons und Stahlfaserspritzbetons (1996a)

    Google Scholar 

  • DBV-Merkblatt: Grundlagen zur Bemessung von Industriefuβböden aus Stahlfaserbeton (1996b)

    Google Scholar 

  • DBV-Merkblatt: Stahlfaserbeton (2001)

    Google Scholar 

  • de Borst, R., Sluys, L.J., Mühlhaus, H.-B., Pamin, J.: Fundamental issues in finite element analyses of localization of deformation. Engineering Computations 10, 99–121 (1993)

    Article  Google Scholar 

  • de Borst, R., Pamin, J., Geers, M.: On coupled gradient-dependent plasticity and damage theories with a view to localization analysis. European Journal of Mechanics A/Solids 18(6), 939–962 (1999)

    Article  MATH  Google Scholar 

  • Deutscher Ausschuss für Stahlbeton (DAfStB): Richtlinie Stahlfaserbeton (22. und 23. Entwurf). Ergänzung zu DIN 1045-1, Teile 1-4 (Dezember 2005)

    Google Scholar 

  • Ding, Y., Kusterle, W.: Compressive stress-strain relationship of steel fibre-reinforced concrete at early age. Cement and Concrete Research 30, 1573–1579 (2000)

    Article  Google Scholar 

  • di Prisco, M., Mazars, J.: Crush-crack - a non-local damage model for concrete. Mechanics of Cohesive-Frictional Materials, 321–347 (1996)

    Google Scholar 

  • Do, M.T., Chaallal, O., Aıtcin, P.C.: Fatigue behavior of high performance concrete. J. Mater. Civil Eng. 5(1), 96–111 (1993)

    Article  Google Scholar 

  • Donze, F.V., Magnier, S.A., Daudeville, L., Mariotti, C.: Numerical study of compressive behaviour of concrete at high strain rates, Journal for Engineering Mechanics 1154-1163 (1999)

    Google Scholar 

  • Dragon, A., Mróz, Z.: A continuum model for plastic-brittle behaviour of rock and concrete. Int. Journ. Eng. Science 17, 121–137 (1979)

    Article  MATH  Google Scholar 

  • Dupont, D., Vandewalle, L.: Bending capacity of steel fibre reinforced (SFRC) beams. In: Proc. Int. Congress on Challenges of Concrete Construction, Dundee, pp. 81–90 (2002)

    Google Scholar 

  • Eckardt, S., Kőnke, C.: Simulation of damage in concrete structures using multiscale models. In: Meschke, G., de Borst, R., Mang, H., Bicanic, N. (eds.) Computational Modelling of Concrete Structures, EURO-C, pp. 77–83. Taylor and Francis, Abington (2006)

    Google Scholar 

  • Eibl, J., Bischoff, P.H., Bachman, G.: Falure mechanism of fibre-reinforced concrete and predamaged structures. Task Report – Brite Euram P-89-3275, Universität Karlsruhe (1991)

    Google Scholar 

  • Falkner, H., Henke, V.: Stahlfaserbeton- konstruktive Anwendungen. Beton- und Stahlbetonbau 95(10), 597–606 (2000)

    Google Scholar 

  • Falkner, H.: Stahlfaserbeton – ein unberechenbares Material? Bauseminar 2002. Braunschweig 164, 1–612 (2002)

    Google Scholar 

  • Foster, S.J., Attard, M.M.: Strength and ductility of fiber-reinforced high-strength concrete columns. Journal of Structural Engineering 127, 1 (2001)

    Article  Google Scholar 

  • Foster, S.J., Attard, M.M.: Experimental tests on eccentrically loaded high strength concrete columns. ACI Struct. J. 94(3), 2295–2303 (1997)

    Google Scholar 

  • Frosch, R.J.: Behavior of large-scale reinforced concrete beams minimum shear reinforcement. ACI Struct. J. 97(6), 814–820 (2000)

    Google Scholar 

  • Furlan, S., de Hanai, J.: Shear behaviour of fiber reinforced concrete beams. Cement and Concrete Composites 19(4), 359–366 (1997)

    Article  Google Scholar 

  • Furlan Jr., S.F., de Hanai, J.B.: Prestressed fiber reinforced concrete beams with reduced ratios of shear reinforcement. Cement and Concrete Composites 21, 213–221 (1999)

    Article  Google Scholar 

  • Ganesan, N., Shivananda, K.P.: Spacing and width of cracks in polymer modified steel fibre reinforced concrete flexural members. In: Proc. Int. Congress on Challenges of Concrete Construction, Dundee, pp. 244–253 (2002)

    Google Scholar 

  • Gao, L., Hsu, T.C.C.: Fatigue of concrete under uniaxial compression cyclic loading. ACI Mater. J. 95(5), 575–581 (1998)

    Google Scholar 

  • Gasser, T.C., Holzapfel, G.A.: 3d crack opening in unreinforced concrete. a two-step algorithm for tracking 3d crack paths. Computer Methods in Applied Mechnics and Engineering 195, 5198–5219 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Ghalib, M.A.: Moment capacity of steel fiber reinforced small concrete slabs. ACI Materials J. 77(4), 247–257 (1980)

    Google Scholar 

  • Gitman, I.M., Askes, H., Sluys, L.J.: Coupled-volume multi-scale modelling of quasi-brittle material. European Journal of Mechanics A/Solids 27, 302–327 (2008)

    MATH  Google Scholar 

  • Glinicki, M.: Dimensioning of industrial floors of fibrous concrete with steel fibres (in polish). In: Conference Warsztat pracy projektanta konstrukcji, vol. IV, pp. 35–47 (2004)

    Google Scholar 

  • Goplaratnam, V.S., Shah, S.P.: Strength deformation and fracture toughness of fiber cement composites at different rates of flexural loading. In: Shah, S.P., Skarendahl, A. (eds.) US-Sweden Joint Seminar, pp. 299–331. Elsevier, Amsterdam (1985)

    Google Scholar 

  • Gopalaratnam, V.S., Shah, S.P., Baton, G.B., Criswell, M.E., Ramaksishran, V., Wecharatara, M.: Fracture toughness of fiber reinforced concrete. ACI Mater. J. 88(4), 339–353 (1991)

    Google Scholar 

  • Gödde, L., Mark, P.: Numerical modeling of failure mechanisms and redistributions effects in steel fibre reinforced concrete slabs. In: Bicanic, N., de Borst, R., Mang, H., Meschke, G. (eds.) Computational Modelling of Concrete Structures, pp. 611–621. Taylor and Francis, Abington (2010)

    Google Scholar 

  • Granju, J.K., Ringot, E.: Amorphous iron fiber reinforced concretes and mortars, comparison of the fiber arrangement. Acta Stereol. 8, 579–584 (1989)

    Google Scholar 

  • Grassl, P., Jirasek, M.: Meso-mechanically motivated nonlocal models for modelling of the fracture process zone in quasi-brittle materials. In: Schrefler, B.A., Perego, U. (eds.) Proc. 8th.World Congress on Computational Mechanics WCCM8, Venice, vol. 30.06-4.06 (2008)

    Google Scholar 

  • Grübl, P., Weigler, H., Karl, S.: Beton, Arten, Herstellung und Eigenschaften, vol. 2. Auflage, Ernst & Sohn, Berlin (2001)

    Google Scholar 

  • Grünewald, S.: Performance-based design of selfcompacting fibre reinforced concrete. Ph.D. Thesis, Delft University of Technology (2004)

    Google Scholar 

  • Grzybowski, M., Meyer, C.: Damage accumulation in concrete with and without fiber reinforcement. ACI Mater. J. 90(6), 594–604 (1993)

    Google Scholar 

  • Haktanir, T., Air, K., Altun, F., Karahan, O.: A comparative experimental investigation of concrete, reinforced concrete and steel-fibre concrete pipes under three-edge-bearing test. Construction and Building Materials 21, 1702–1708 (2007)

    Article  Google Scholar 

  • Harajli, M.H., Maalouf, D., Khatib, H.: Effect of fibers on the punching shear strength of slab–column connections. Cem. Concr. Res. 17, 161–170 (1995)

    Article  Google Scholar 

  • Hartman, T.: Steel fiber reinforced concrete. PhD Thesis, Royal Institute of Technology, Stockholm, Sweden, 38 (1999)

    Google Scholar 

  • He, H., Guo, Z., Stroeven, P., Stroeven, M., Sluys, L.: J. Influence of Particle Packing on Elastic Properties of Concrete. In: Ist International Conference on Computational Technologies in Concrete Structures CTCS 2009, Jeju, Korea, May 24-27 (2009)

    Google Scholar 

  • Henke, V., Empelmann, M.: Rissbreitenberechnung bei Kombibewehrung. Beton- und Stahlbetonbau 102(2), 66–79 (2007)

    Article  Google Scholar 

  • Herrmann, H.J., Hansen, A., Roux, S.: Fracture of disordered elastic lattices in two dimensions. Physical Rev. B 39, 637–647 (1989)

    Article  Google Scholar 

  • Hillerborg, A.: Determination and significanvce of the fracture toughness of steel fibre concrete. In: Shah, S.P. (ed.) Proc. Steel Fiber Concrete US-Sweden Joint Seminar (1983)

    Google Scholar 

  • Hilsdorf, H.K., Brameshuber, W., Kottas, R.: Abschlussbericht zum Forschunbgsvorhaben Weiterentwicklung und Optimierung der Materialeigenschaften faserbewehrten Betons und Spritzfaserbetons als Stabilisierungselemente der Felssicherung. Universität Karlsruhe (1985)

    Google Scholar 

  • Horii, H., Shin, H.C., Pallewatta, T.M.: Mechanism of fatigue crack growth in concrete. Cem. Concr. Compos. 14, 83–89 (1992)

    Article  Google Scholar 

  • Horszczaruk, E.: Wear abrasion model of cement concretes (in polish). Monograph. Szczecin University of Technology, Szczecin (2008)

    Google Scholar 

  • Hőcker, T.: Einflu β von Stahlfasern auf das Verschleiβverhalten von Betonen unter extremen Betriebsbedingungen in Bunkern von Abfallbehandlungsanlagen. DafSfb, Heft 488, Beuth Verlag (1996)

    Google Scholar 

  • Hsu, T.C.C.: Fatigue of plain concrete. ACI Materials J. 78, 292–305 (1981)

    Google Scholar 

  • Iman, M., Vandewalle, L., Mortelmans, F., Vanemert, D.: Shear domain of fibre-reinforced high strength concrete beams. Engineering Structures 9 (1997)

    Google Scholar 

  • Ibrahimbegovic, A., Markovic, D., Gatuing, F.: Constitutive model of coupled damage-plasticity and its finite element implementatation. Eur. J. Finite Elem. 12(4), 381–405 (2003)

    MATH  Google Scholar 

  • JCI-S-002-003 Standard. Method of test for load-displacement curve of fiber reinforced concrete by use of notched beam (2003)

    Google Scholar 

  • Jenq, Y.S., Shah, S.P.: Application of two parameter fracture model to concrete and fiber reinforced concrete. In: Wittmann, F.H. (ed.) Fracture Toughness and Fracture Energy of Concrete. Elsevier, Amsterdam (1986)

    Google Scholar 

  • Jirasek, M., Bazant, Z.P.: Particle model for quasi-brittle fracture and application to sea ice. J. Eng. Mech. 121(9), 1016–1025 (1995)

    Article  Google Scholar 

  • Jirasek, M.: Comments on microplane theory. In: Pijaudier-Cabot, G., Bittnar, Z., Gerard, B. (eds.) Mechanics of quasi-brittle materials and structures, pp. 55–77. Hermes Science Publications (1999)

    Google Scholar 

  • Johnston, C.D., Zemp, R.W.: Flexural fatigue performance of steel fiber reinforced concrete-influence of fiber content, aspect ratio, and type. ACI Mater. J. 88(4), 374–383 (1991)

    Google Scholar 

  • Jones, P.A., Austin, S.A., And Robins, P.J.: Predicting the flexural load-deflection response of steel fibre reinforced concrete from strain, crack-width, fibre pull-out and distribution data. Materials and Structures 41, 449–463 (2008)

    Article  Google Scholar 

  • Juarez, C., Valdez, P., Duran, A., Sobolev, K.: The diagonal tension behavior of fiber reinforced concrete beams. Cement & Concrete Composites 29, 402–408 (2007)

    Article  Google Scholar 

  • Jun, Z., Stang, H.: Fatigue performance in flexure of fiber reinforced concrete. ACI Mater. J. 95(1), 58–67 (1998)

    Google Scholar 

  • Kabele, P.: Multiscale framework for modeling of fracture in high performance fiber reinforced cementitious composites. Engineering Fracture Mechanics 74, 194–209 (2007)

    Article  Google Scholar 

  • Karayannis, C.G.: A numerical approach to steel fibre reinforced concrete under torsion. Structural and Engineering Review 7(2), 83–91 (1995)

    Google Scholar 

  • Kawai, T.: New discrete models and their application to seismic response analysis of structure. Nuclear Engineering and Design 48, 207–229 (1978)

    Article  Google Scholar 

  • Khuntia, M., Stojadinovic, B.: Shear strength of reinforced concrete beams without transverse reinforcement. ACI Struct. J. 98(5), 648–656 (2001)

    Google Scholar 

  • Klisiński, M., Mróz, Z.: Description of anelastic deformations and damage for concrete (in polish). Technical University of Poznań, 193 (1988)

    Google Scholar 

  • Kooiman, A.G.: Modelling steel fibre reinforced concrete for structural design. Ph.D. Thesis, TU Delft (2000)

    Google Scholar 

  • Kolluru, S.V., O’Neil, E.F., Popovics, J.S., Shah, S.P.: Crack propagation in flexural fatigue of concrete. J. Eng. Mech. 126(9), 891–898 (2000)

    Article  Google Scholar 

  • Komlos, K., Babal, B., Nürnbergerova: Hybrid fibre-reinforced concrete under repeated loading. Nuclear Engineering and Design 156, 195–200 (1995)

    Article  Google Scholar 

  • Kompfner, T.A.: Ein finites Elementmodell für die geometrisch und physikalisch nicht-lineare Berechnung von Stahlbetonschalen. PhD Thesis, University of Stuttgart, Germany (1983)

    Google Scholar 

  • Kozicki, J., Tejchman, J.: Discrete methods to describe the behaviour of quasi-brittle and granular materials. In: Electronic Proceedings of 16th Engineering Mechanics Conference ASCE, University of Washington, Seattle, USA, July 16-18, pp. 1–10 (2003)

    Google Scholar 

  • Kozicki, J., Tejchman, J.: 2D lattice model for fracture in brittle materials. Archives of Hydro-Engineering and Environmental Mechanics 53(2), 71–88 (2006)

    Google Scholar 

  • Kozicki, J.: Application of discrete models to describe the fracture process in brittle materials. PhD Thesis, Gdañsk University of Technology (2007)

    Google Scholar 

  • Kozicki, J., Tejchman, J.: Experimental investigations of strain localization in concrete using Digital Image Correlation (DIC) technique. Archives of Hydro-Engineering and Environmental Mechanics 54(1), 3–24 (2007a)

    Google Scholar 

  • Kozicki, J., Tejchman, J.: Effect of aggregate structure on fracture process in concrete using 2D lattice model. Archives of Mechanics 59(4-5), 1–20 (2007b)

    Google Scholar 

  • Kozicki, J., Tejchman, J.: Modelling of fracture processes in concrete using a novel lattice model. Granular Matter 10(5), 377–388 (2008)

    Article  Google Scholar 

  • Kozicki, J.F.V., Donzé, F.V.: A new open-source software developed for numerical simulations using discrete modeling methods. Comput. Methods Appl. Mech. Engrg. 197, 4429–4443 (2008)

    Article  MATH  Google Scholar 

  • Kozicki, J., Tejchman, J.: Effect of fibrous bond on fracture process in concrete with steel fibres using irregular 3D lattice model. Engineering Fracture Mechanics (submitted, 2010)

    Google Scholar 

  • Krstulovic-Opara, N., Haghayeghi, A.R., Haidar, M., Krauss, P.D.: Use of conventional and high-performance steel-fiber reinforced concrete for bridge deck overlays. ACI Mater. J. 92(6), 669–677 (1995)

    Google Scholar 

  • Kulaa, J.: Fibre-reinforced concrete under uniaxial tensile loading. Nordic Concrete Research 14, 77–90 (1994)

    Google Scholar 

  • Kwak, K.H., Suh, J., Hsu, T.C.T.: Shear-fatigue behavior of steel fiber reinforced concrete beams. ACI Struct. J. 88(2), 155–160 (1991)

    Google Scholar 

  • Kwan, A.K.H., Ng, I.Y.T.: Adding steel fibres to improve shock vibration resistance of concrete. Magazine of Concrete Research 59(8), 587–597 (2007)

    Article  Google Scholar 

  • Le Bellego, C., Dube, J.F., Pijaudier-Cabot, G., Gerard, B.: Calibration of nonlocal damage model from size effect tests. European Journal of Mechanics A/Solids 22, 33–46 (2003)

    Article  MATH  Google Scholar 

  • Leite, J.P.B., Slowik, V., Mihashi, H.: Computer simulation of fracture processes of concrete using mesolevel models of lattice structures. Cem. Concr. Res. 34(6), 1025–1033 (2004)

    Article  Google Scholar 

  • Lee, M.K., Barr, B.I.G.: An overview of the fatigue behaviour of plain and fibre reinforced concrete. Cement & Concrete Composites 26, 299–305 (2004)

    Article  Google Scholar 

  • Li, V.C., Horii, H., Kabele, P., Kanda, T., Lim, Y.M.: Repair and retrofit with engineered cementitious composites. Engineering Fracture Mechanics 65, 317–334 (2000)

    Article  Google Scholar 

  • Li, V.C., Wang, Y.J., Backers, S.: A micromechanical model of tension-softening and bridging toughening of short random fiber reinforced brittle matrix composites. J. Mech. Phy. Solids 39(5), 607–625 (1991)

    Article  Google Scholar 

  • Lilliu, G., van Mier, J.G.M.: 3d lattice type fracture model for concrete. Engineering Fracture Mechanics 70, 927–941 (2003)

    Article  Google Scholar 

  • Lim, T.Y., Paramaivam, P., Lee, S.L.: Analytical model for tensile behaviour of steel-fibre concrete. ACI Materials Journal (1987)

    Google Scholar 

  • Lim, D.H., Oh, B.H.: Experimental and theoretical investigation on the shear of steel fibre reinforced concrete beams. Engineering Structures 21, 937–944 (1999)

    Article  Google Scholar 

  • Lin, Y.-Z.: Tragverhalten von Stahlfaserbeton, Deutscher Ausschuss für Stahlbeton, Heft 494, Berlin, Beuth Verlag GmbH (1999)

    Google Scholar 

  • Linsel, S.: Magnetische Positionierung von Stahlfasern in zementösen Medien. PhD. Thesis, Technische Universität Berlin (2005)

    Google Scholar 

  • Lodygowski, T., Perzyna, P.: Numerical modelling of localized fracture of inelastic solids in dynamic loading process. Int. J. Num. Meth. Eng. 40(22), 4137–4158 (1997)

    Article  MATH  Google Scholar 

  • Liu, T.C.Y., Nilson, A.H., Slate, F.O.: Biaxial stress-strain relationships for concrete. ASCE Journal of Engineering Mechanics 103, 423–439 (1996)

    Google Scholar 

  • Lohrmann, G.: Faserbeton unter hoher Dehngeschwindigkeit. PhD Thesis, University of Karlsruhe, 33 (1999)

    Google Scholar 

  • Loret, B., Prevost, J.H.: Dynamic strain localisation in elasto-visco-plastic solids, Part 1. General formulation and one-dimensional examples. Comp. Appl. Mech. Eng. 83, 247–273 (1990)

    MATH  Google Scholar 

  • Maalej, M., Li, V.: Flexural strength of fiber cementitious composites. Journal of Materials in Civil Engineering 6, 5 (1994)

    Google Scholar 

  • Mangat, P.S., Azari, M.M.: A theory for the creep of steel fiber reinforced cement matrices under compression. Journal of Materials Science 20, 1119–1133 (1985)

    Article  Google Scholar 

  • Mangat, P.S., Azari, M.M.: Shrinkage of steel fiber reinforced cement composites. Mat. Struct. 21, 163–171 (1988)

    Article  Google Scholar 

  • Mansur, M.A., Ong, K.C.G., Paramisivam, P.: Shear strength fibrous concrete beams without stirrups. Journal of Structural Engineering 12(9), 2066–2079 (1986)

    Article  Google Scholar 

  • Markovic, I.: High-performance hybrid-fibre concrete. Ph.D. Thesis, Delft University of Technology (2006)

    Google Scholar 

  • McHarg, P.J., Cook, W.D., Mitchell, D., Yoon, Y.S.: Benefits of concentrated slab reinforcement and steel fibers on performance of slab–column connections. ACI Struct. J. 97(2), 225–234 (2000)

    Google Scholar 

  • Menetrey, P., Willam, K.J.: Triaxial failure criterion for concrete and its generalization. ACI Structural Journal, 311–318 (1995)

    Google Scholar 

  • Mindes, S., Banthia, N., Bentur, A.: The response of reinforced concrete beams with a fibre concrete matrix to impact loading. Int. J. of Cement Composites and Lightweight Concrete 8(3), 165–170 (1986)

    Article  Google Scholar 

  • Mirsayah, A.A., Banthia, N.: Shear strength of steel fiber-reinforced concrete. ACI Struct. J. 99(5), 473–479 (2002)

    Google Scholar 

  • Mohammadi, Y., Singh, S.P., Kaushik, S.K.: Properties of steel fibrous concrete containing mixed fibres in fresh and hardened state. Construction and Building Materials 22, 956–965 (2008)

    Article  Google Scholar 

  • Moonen, P., Carmeliet, J., Sluys, L.J.: A continuous-discontinuous approach to simulate fracture processes. Philosophical Magazine 88, 3281–3298 (2008)

    Article  Google Scholar 

  • Morris, A.D., Garrett, G.G.: A comparative study of the static and fatigue behaviour of plain and steel fibre reinforced mortar in compression and direct tension. Int. J. Cem. Compos. Lightweight Concr. 3(2), 73–91 (1981)

    Article  Google Scholar 

  • Mróz, Z.: Mathematical models of inelastic concrete behaviour, pp. 47–72. University Waterlo Press, Waterlo (1972)

    Google Scholar 

  • Mühlhaus, H.-B.: Application of Cosserat theory in numerical solutions of limit load problems. Ing. Arch. 59, 124–137 (1989)

    Article  Google Scholar 

  • Mühlhaus, H.-B., Aifantis, E.C.: A variational principle for gradient plasticity. Int. J. Solids Structures 28, 845–858 (1991)

    Article  MATH  Google Scholar 

  • Naaman, A.E., Hammoud, H.: Fatigue characteristics of high performance fiber-reinforced concrete. Cem. Concr. Compos. 20, 353–363 (1998)

    Article  Google Scholar 

  • Nammur, G.G., Naaman, A.E.: Strain rate effects of tensile properties of fiber reinforced concrete. In: Mindess, S., Shah, S.P. (eds.) Symposia Procedeengs Cement-based composites – strain rate effects on fracture, Pittsburgh, vol. 64, pp. 97–118 (1986)

    Google Scholar 

  • Narayaman, R., Darwish, I.Y.S.: Shear in mortar beams containing fibers and fly-ash. ACI Structural Journal 114(1), 84–102 (1988)

    Article  Google Scholar 

  • Neddleman, A.: Material rate dependence and mesh sensitivity in localization problems. Comp. Meths. Appl. Mech. Eng. 67, 69–85 (1988)

    Article  Google Scholar 

  • Neville, A.M.: Properties of concrete, pp. 628–645. Pitmann Publishing Ltd., Great Britain (1994)

    Google Scholar 

  • Noghabai, K.: Beams of fibrous concrete in shear and bending: experiment and model. J. Struct. Eng. 126(2), 243–251 (2000)

    Article  Google Scholar 

  • Nooru-Mohamed. M.: Mixed mode fracture of concrete: an experimental approach. PhD Thesis, Delft University of Technology (1992)

    Google Scholar 

  • Oh, B.H.: Fatigue-life distributions of concrete for various stress levels. ACI Mater. J. 88(2), 122–128 (1991)

    Google Scholar 

  • Ong, K.C.G., Basheerkhan, M., Paramasivam, P.: Resistance of fibre concrete slabs to low velocity projectile impact. Cement and Concrete Composites 21(5-6), 391–401 (1999)

    Article  Google Scholar 

  • Ortiz, N., Pandolfi, A.: Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int. Journal for Numerical Methods in Engineering 44, 1267–1282 (1999)

    Article  MATH  Google Scholar 

  • Padmarajaiah, S.K., Ramaswamy, A.: Behavior of fiber-reinforced prestressed and reinforced high-strength concrete beams subjected to shear. ACI Struct. J. 98(5), 752–761 (2001)

    Google Scholar 

  • Paine, K.A., Elliott, K.S., Peaston, C.H.: Flexural toughness as a measure of shear strength and ductility of prestressed fibre reinforced concrete beams. In: Proc. Int. Congress on Challenges of Concrete Construction, Dundee, pp. 200–212 (2002)

    Google Scholar 

  • Palaniswamy, R., Shah, S.P.: Fracture and stress-strain relationship of concrete under triaxial compression. ASCE Journal of Engineering Mechanics 100, 901–916 (1974)

    Google Scholar 

  • Pamin, J.: Gradient-enhanced continuum models: formulation, discretization and applications. Monograph, Cracow University of Technology (2004)

    Google Scholar 

  • Pamin, J., de Borst, R.: Simulation of crack spacing using a reinforced concrete model with an internal length parameter. Arch. App. Mech. 68(9), 613–625 (1998)

    Article  MATH  Google Scholar 

  • Paskova, T., Meyer, C.: Low-cycle fatigue of plain and fiber-reinforced concrete. ACI Mater. J. 94(4), 273–285 (1997)

    Google Scholar 

  • Peerlings, R.H., de Borst, R., Brekelmans, W.A.M., Geers, M.G.D.: Gradient enhanced damage modelling of concrete fracture. Mechanics of Cohesive-Frictional Materials 3, 323–342 (1998)

    Article  Google Scholar 

  • Peng, X., Meyer, C.: A continuum damage mechanics model for concrete reinforced with randomly distributed short fibres. Comput. Struct. 78, 505–515 (2000)

    Article  Google Scholar 

  • Pietruszczak, S., Jiang, J., Mirza, F.A.: An elastoplastic constitutive model for concrete. Int. J. Solids Structures 24(7), 705–722 (1988)

    Article  Google Scholar 

  • Pijaudier-Cabot, G., Bazant, Z.: Nonlocal damage theory. ASCE Journal of Engineering Mechanics 113, 1512–1533 (1987)

    Article  Google Scholar 

  • Pompo, A., Stupak, P.R., Nicolais, L., Marchese, B.: Analysis of steel fibre pull-out from a cement matrix using video photography. Cement and Concrete Composites 18, 3–8 (1996)

    Article  Google Scholar 

  • Radtke, F.K.F., Simone, A., Sluys, L.J.: An efficient computational model for fibre reinforced concrete incorporating information from multiple scales. In: Schrefler, B.A., Perego, U. (eds.) Proc. 8th. World Congress on Computational Mechanics WCCM8, Venice, 30.06-4.06 (2008)

    Google Scholar 

  • Radtke, F., Simone, A., Sluys, L.J.: A computational model for failure in fibre reinforced concrete including the influence of discrete fibre distributions. In: Proc. 1st Int. Conf. Computational Technologies in Concrete Structures, CTCS 2009, pp. 767–781 (2009)

    Google Scholar 

  • Radtke, F., Simone, A., Sluys, L.J.: A computational model for failure analysis of fibre reinforced concrete with discrete treatment of fibres. Engng. Fracture Mech. 77, 597–620 (2010)

    Article  Google Scholar 

  • Rafeeq, A.S., Gupta, A., Krishnamoorthy, S.: Influence of steel fibers in fatigue resistance of concrete in direct compression. J. Mater. Civil Eng. 12(2), 172–179 (2000)

    Article  Google Scholar 

  • Ramakrishnan, V., Lokvik, B.J.: Flexural fatigue strength of fiber reinforced concretes. In: Reinhardt, H.W., Naaman, A.E. (eds.) High Performance Fiber Reinforced Cement Composites: Proceedings of the International RILEM/ACI Workshop, pp. 271–287. E&FN SPON, London (1992)

    Google Scholar 

  • Redon, C., Chermant, J.-L.: Damage mechanics applied to concrete reinforced with amortphous cast iron fibers, concrete subjected to compression. Cement and Concrete Composites 21, 197–204 (1999)

    Article  Google Scholar 

  • RILEM TC 162-TDF. Test and design methods for steel fibre reinforced concrete – uni-axial tension test for steel fibre reinforced concrete. Mater. Struct. 34(1), 3–6 (2001)

    Google Scholar 

  • RILEM TC 162-TDF, Test and design methods for steel fibre reinforced concrete sigma-epsilon-design method. Materials and Structures 36(262), 560–567 (2003)

    Google Scholar 

  • Robins, P.J., Austin, S.A., Jones, P.A.: Spatial distribution of steel fibres in sprayed and cast concrete. Magazine of Concrete Research 55(3), 225–235 (2003)

    Google Scholar 

  • Roesler, J.R., Lange, D.A., Altoubat, S.A., Rieder, K.-A., Ulreich, G.R.: Fracture of plain and fiber-reinforced concrete slabs under monotonic loading. ASCE J. Mater. Civil Eng. 6(5), 452–460 (2004)

    Article  Google Scholar 

  • RÖVBB Richtlinie der Österreichen Vereinigung für Beton und Bautechnik, Faserbeton, Wien (2002)

    Google Scholar 

  • Saito, M.: Characteristics of microcracking in concrete under static and repeated tensile loading. Cement Concrete Research 17, 211–218 (1987)

    Article  Google Scholar 

  • Sakaguchi, H., Mühlhaus, H.-B.: Mesh free modelling of failure and localisation in brittle materials. In: Asaoka, A., Adachi, T., Oka, F. (eds.) Deformation and Progressive Failure in Geomechanics, pp. 15–21 (1997)

    Google Scholar 

  • SCA Swedish Concrete Association, Stälfiberbetong – rekommendationer för konstruktion, ulförande och provning (1997)

    Google Scholar 

  • Schlangen, E., Garboczi, E.J.: Fracture simulations of concrete using lattice models: computational aspects. Engineering Fracture Mechanics 57, 319–332 (1997)

    Article  Google Scholar 

  • Schnütgen, B.: Bemessung von Stahlfaserbeton und ihre Problematik, vol. 37. Ruhr-Universität Bochum (1981)

    Google Scholar 

  • Schnütgen, B., Teutsch, M.: Beonbauwerke aus Stahlfaserbeton beim Umgang mit umweltgefährdenden Stoffen. Beton- und Stahlbetonbau 96(7), 451–457 (2001)

    Google Scholar 

  • Schőnlin. K.: Ein Verfahren zur Ermittlung der Orientierung und Menge der Fasern im faserbewehrten Beton. Diplomarbeit, Universität Karlsruhe (1983)

    Google Scholar 

  • Schulz, M.: Einsatz von Stahlfaserbeton beim Bau von Schrottplätzen. Stahlfaserbeton – ein unberechenbares Material? Bauseminar, Braunschweig 164, 47–63 (2002)

    Google Scholar 

  • Sendeckyj, G.P.: Constant life diagrams-a historical review. Int. J. Fatigue 23, 347–353 (2001)

    Article  Google Scholar 

  • Shah, S.P., Rangan, B.V.: Effect of reinforcements of ductility of concrete. In: ASCE Proc., vol. 96(ST6), pp. 1167–1183 (1970)

    Google Scholar 

  • Shah, S.P., Rangan, B.V.: Fiber reinforced concrete properties. ACI Journal 68(2), 126–135 (1971)

    Google Scholar 

  • Shah, S.P.: Fiber reinforced concrete. Am. Concr. Inst. 12(3), 81–82 (1990)

    Google Scholar 

  • Shah, S.P., Ouyang, C.: Mechanical behaviour of fiber-reinforced cement-based composites. Journal of the American Ceramic Society 74(11), 2227–2238 (1991)

    Article  Google Scholar 

  • Shaheen, E., Shrive, N.G.: Cyclic loading and fracture mechanics of Ductal concrete. Int. J. Fract. 148, 251–260 (2007)

    Article  Google Scholar 

  • Shin, S.W., Oh, J.G., Ghosh, S.K.: Shear behavior of laboratory-sized high strength concrete beams reinforced with bars and steel fibers, SP-142-10. American Concrete Institute, 181–200 (1994)

    Google Scholar 

  • Shi, X.P., Fwa, T.F., Tan, S.A.: Flexural fatigue strength of plain concrete. ACI Mater. J. 90(5), 435–440 (1993)

    Google Scholar 

  • Shoemake, K.: Quaternion calculus and fast animation. SIGGRAPH course notes (1985)

    Google Scholar 

  • Simo, J.C., Oliver, J., Armero, F.: An analysis of strong discontinuities induced by strain-softening in rate–independent inelastic solids. Computational Mechanics 12, 277–296 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Simone, A., Sluys, L.J.: The use of displacement discontinuities in a rate-dependent medium. Computer Methods in Applied Mechanics and Engineering 193, 3015–3033 (2004)

    Article  MATH  Google Scholar 

  • Singh, S.P., Kaushik, S.K.: Flexural fatigue life distributions and failure probability of steel fibrous concrete. ACI Mater. J. 297(6), 658–667 (2000)

    Google Scholar 

  • Sivakumar, A., Santhanam, M.: A quantitative study on the plastic shrinkage cracking in high strength hybrid fibre reinforced concrete. Cement & Concrete Composites 29, 575–581 (2007a)

    Article  Google Scholar 

  • Sivakumar, A., Santhanam, M.: Mechanical properties of high strength concrete reinforced with metallic and non-metallic fibres. Cement and Concrete Composites 29, 603–608 (2007b)

    Article  Google Scholar 

  • Skarżyński, Ł., Tejchman, J.: Mesoscopic modelling of strain localization in concrete. Archives of Civil Engineering LV 4, 521–540 (2009)

    Google Scholar 

  • Skarżyński, Ł., Tejchman, J.: Calculations of fracture process zones on meso-scale in notched concrete beams subjected to three-point bending. European Journal of Mechanics / A Solids 29, 746–760 (2010)

    Article  Google Scholar 

  • Sluys, L.: Wave propagation, localisation and dispersion in softening solids, PhD thesis. Delft University of Technology (1992)

    Google Scholar 

  • Sluys, L., de Borst, R.: Dispersive properties of gradient and rate-dependent media. Mech. Mater. 183, 131–149 (1994)

    Article  Google Scholar 

  • Smadi, M.M., Bani Yasin, I.S.: Behavior of high-strength fibrous concrete slab–column connections under gravity and lateral loads. Construction and Building Materials 22, 1863–1873 (2008)

    Article  Google Scholar 

  • Song, P.S., Hwang, S., Sheu, B.C.: Statistical evaluation for impact resistance of steel-fibre-reinforced concretes. Magazine of Concrete Research 56(8), 437–442 (2004)

    Google Scholar 

  • Soroushian, P., Lee, C.D.: Distribution and orientation of fibrers insteel fiber reinforced concrete. ACI Materials Journal 87, 5 (1990)

    Google Scholar 

  • Soulioti, D.V., Barkoula, N.M., Paipetis, A., Matikas,T. E.: Effects of f ibre geometry and volume fraction on the flexural behaviour of steel-fibre reinforced concrete. Strain (in print, 2010)

    Google Scholar 

  • Spadea, G., Bencardino, F.: Behavior of fiber-reinforced concrete beams under cyclic loading. J. Struct. Eng. 123(5), 660–668 (1997)

    Article  Google Scholar 

  • Stamm, M.: Schädigungsevolution von Stahlfaserbeton. Beton und Stahlbetonbau 97(2), 365–371 (2002)

    Google Scholar 

  • Stähli, P., Custer, R., van Mier, J.G.M.: On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC. Materials and Structures 41, 189–196 (2008)

    Article  Google Scholar 

  • Stroeven, P., Shah, S.P.: Use of radiography-image analysis for steel fibre reinforced concrete. In: Testing and Test Methods of Fiber Content Cement Composites. RILEM Symposium. Construction Press Ltd. (1978)

    Google Scholar 

  • Suaris, W., Shah, S.P.: Strain rate effects in fibre-reinforced concrete subjected to impact and impulsive loading. Composites 13, 153–159 (1982)

    Article  Google Scholar 

  • Suaris, W., Shah, S.P.: Test methods for impact resistance of fiber reinforced concrete. In: Hoff, G.C. (ed.) Proceedings of an International Symposium on Fiber Reinforced Concrete, American Concrete Institute, Detroit, vol. ACI SP-81, pp. 247–265 (1984)

    Google Scholar 

  • Su, E.C.M., Hsu, T.C.C.: Biaxial compression fatigue and discontinuity of concrete. ACI Mater. J. 3, 78–188 (1988)

    Google Scholar 

  • Sun, W., Janming, G.: A study on the fatigue performance of SFRC. In: Proc. on Research on SFRC, pp. 49–60. Dalian University of Technology, China (1990)

    Google Scholar 

  • Sun, W., Gao, J., Yan, Y.: Study of the fatigue of steel fiber reinforced concrete. ACI Materials Journal 5, 217–225 (1992)

    Google Scholar 

  • Suwada, H., Fukuyama, H.: Nonlinear finite element analysis on shear failure of structural elements HPFRCC. J. Advanced Cement Technology 4(11), 45–57 (2006)

    Article  Google Scholar 

  • Swamy, R.N., Stavrides, H.: Influence of fiber reinforcement on restrained shrinkage and cracking. ACI J., 443–460 (1979)

    Google Scholar 

  • Swamy, R.N., Sar, A.: Punching shear behavior of reinforced slab–column connections made with steel fiber concrete. ACI J. Proc. 79(5), 392–406 (1982)

    Google Scholar 

  • Swamy, R.N., Bahla, H.M.: The effectivness of steel fibres as shear reinforcement. Concrete International, 35–40 (1985)

    Google Scholar 

  • Swamy, R.N., Jones, R., Chiam, T.P.: Influence of steel fibers on the shear resistance of lightweight concrete I-beams. ACI Struct. J. 90(1), 103–114 (1993)

    Google Scholar 

  • Szumigała, E., Jasiczek, J., Zieliński, K.: Cemetitious concrtes with steel fibres – characteristics and own experiments (in polish), Industrial floors, Adiment Polska, Poznań, pp. 81–100 (2001)

    Google Scholar 

  • Tajima, K., Shirai, N.: Numerical prediction of crack width in reinforced concrete beams by particle model. In: Meschke, G., de Borst, R., Mang, H., Bicanic, N. (eds.) Computational Modelling of Concrete Structures, EURO-C, pp. 221–230. Taylor and Francis, Abington (2006)

    Google Scholar 

  • Tan, K.H., Murugappan, K., Paramasivam, P.: Shear behavior of fiber reinforced concrete beams. ACI Struct. J. 90(1), 3–11 (1993)

    Google Scholar 

  • Tan, K.H., Paramasivam, P., Murugappan, K.: Steel fibers as shear reinforcement in partially prestressed beams. ACI Struct. J. 92(6), 643–652 (1995)

    Google Scholar 

  • Tejchman, J., Wu, W.: Numerical study on shear band patterning in a Cosserat continuum. Acta Mechanica 99, 61–74 (1993)

    Article  MATH  Google Scholar 

  • Tejchman, J.: FE modeling of shear localization in granular bodies with micro-polar hypoplasticity. In: Wu, W., Borja, R. (eds.) Springer Series in Geomechanics and Geoengineering. Springer, Heidelberg (2008)

    Google Scholar 

  • The Concrete Society. Concrete industrial ground floors – a guide to design and construction. 3rd ed. Technical Report 34 (2003)

    Google Scholar 

  • Topcu, I.B., Canbaz, M.: Effect of different fibers on the mechanical properties of concrete containing fly ash. Construction and Building Materials 21, 1486–1491 (2007)

    Article  Google Scholar 

  • Tosun, K., Yazıcı, H., Yigĭter, H., Aydın, S.: An investigation on sulphate resistance of mortars containing fly ash. TMMOB, Chamber of civil engineers. In: 5th National concrete congress proceedings, Istanbul, Turkey, pp. 17–26 (2003)

    Google Scholar 

  • Tye, N.V., Henze, S., Küchler, M., Schenck, G., Wille, K.: Ein optoanalytisches Verfahren zur Bestimmung der Faserverteilung und –orientierung in stahlfaserverstärtktem UHFB. Beton- und Stahlbetonbau 10, 674–680 (2007), doi:10.1002/best.200700568

    Article  Google Scholar 

  • Ulfkjaer, J., Krek, S., Brincker, R.: Analytical model for fictitious crack propagation in concrete beam. ASCE J. Eng. Mech. 121(1), 7–15 (1995)

    Article  Google Scholar 

  • Unal, O., Uygunoglu, T.: An investigation on freezing-thawing durability of concretes with fly ash. In: Turkish ready mixed concrete association, concrete 2004 congress proceeding, Istanbul, Turkey, pp. 376–386 (2004)

    Google Scholar 

  • van Hauwaert, A., van Mier, J.G.M.: Computational modeling of the fibre-matrix bond in steel fibre reinforced concrete. In: Mihashi, H., Rokugo, K. (eds.) Fracture Mechanics of Concrete Structures, pp. 561–571. Aedificatio Publishers, Freiburg (1998)

    Google Scholar 

  • van Mier, J.G.M., Schlangen, E., Vervuurt, A.: Lattice type fracture models for concrete. In: Mühlhaus, H.-B. (ed.) Continuum Models for Materials with Microstructure, pp. 341–377. John Wiley & Sons, Chichester (1995)

    Google Scholar 

  • van Mier, J.G.M., van Vliet, M.R.A.: Influence of microstructure of concrete on size/scale effects in tensile fracture. Engineering Fracture Mechanics 70(16), 2281–2306 (2003)

    Article  Google Scholar 

  • van Vliet, M.R.A., van Mier, J.G.M.: Experimental investigation of concrete fracture under uniaxial compression. Mechanics of Cohesive-Frictional Materials 1, 115–127 (1996)

    Article  Google Scholar 

  • van Vliet, M.R.A.: Size effect in tensile fracture of concrete and rock. PhD thesis (2000)

    Google Scholar 

  • Vervuurt, A., van Mier, J.G.M., Schlangen, E.: Lattice model for analyzing steel-concrete interactions. In: Siriwardane, Zaman (eds.) Computer Methods and Advances in Geomechanics, Balkema, Rotterdam, pp. 713–718 (1994)

    Google Scholar 

  • Vidya Sagar, R.: Size effect in tensile fracture of concrete - a study based on lattice model applied to ct-specimen. In: Proc. 21st Intern. Congress on Theoretical and Applied Mechanics, ICTAM 2004, Warsaw, pp. 1–2 (2004) (cd-rom)

    Google Scholar 

  • Vorechovsky, M., Elias, J.: Relations between structure size, mesh density and element strength of lattice models. In: Bicanic, N., de Borst, R., Mang, H., Meschke, G. (eds.) Computational Modelling of Concrete Structures, pp. 419–431. Taylor and Francis, Abington (2010)

    Google Scholar 

  • Wafa, F.F., Ashour, S.A.: Mechanical properties of high-strength fiber reinforced concrete. ACI Materials Journal 89(5), 449–455 (1992)

    Google Scholar 

  • Walraven, J.C., Grünewald, S.: Regelung und Anwendung des Stahlfaserbetons in den Niederlanden. Stahlfaserbeton – ein unberechenbares Material. Bauseminar 2002, Braunschweig 164, 47–63 (2002)

    Google Scholar 

  • Walton, P.L., Majumdar, A.: Cement based composites with mixtures of different types of fibres. J. Composite 6, 209–216 (1975)

    Article  Google Scholar 

  • Wang, N., Mindess, S., Ko, K.: Fibre reinforced concrete beams under impact loading. Cement and Concrete Research 26(3), 363–376 (1996)

    Article  Google Scholar 

  • Ward, R.J., Li, V.C.: Dependence of flexural behavior of fiber reinforced mortar on material fracture resistance and beam size. ACI Materials Journal 87, 6 (1990)

    Google Scholar 

  • Wecharatana, M., Shah, S.P.: A model for predicting fracture resistance of fiber reinforced concrete. Cement Concrete Research 13, 819–829 (1983)

    Article  Google Scholar 

  • Wells, G., Sluys, L.: A new method for modeling of cohesive cracks using finite elements. Int. Journ. for Numerical Methods in Engineering 50(12), 2667–2682 (2001)

    Article  MATH  Google Scholar 

  • Wichmann, H.-J., Niemann, P., Droese, S.: Messung des Stahlfasergehaltes auf elektromagnetischer Basis. Forschungsarbeiten aus dem Institut für Baustoffe. Massivbau und Brandschutz der Universität Braunschweig, Heft 144, Braunschweig (1999)

    Google Scholar 

  • Yao, W., Lib, J., Wu, K.: Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cement Concrete Research 33, 27–30 (2003)

    Article  Google Scholar 

  • Yazıcı, S., Inan, G., Tabak, V.: Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Construction and Building Materials 21, 1250–1253 (2007)

    Article  Google Scholar 

  • Yin, W., Hsu, T.C.C.: Fatigue behavior of steel fiber reinforced concrete in uniaxial and biaxial compression. ACI Mater. J. 92(1), 71–81 (1995)

    Google Scholar 

  • Yip, M., Li, Z., Liao, B.S., Bolander, J.E.: Irregular lattice models of fracture of multiphase particulate. Int. J. Fract. 140, 113–124 (2006)

    Article  MATH  Google Scholar 

  • Zbib, H.M., Aifantis, C.E.: A gradient-dependent flow theory of plasticity: application to metal and soil instabilities. Appl. Mech. Reviews 42(11), 295–304 (1989)

    Article  Google Scholar 

  • Zhang, B., Phillips, D.V., Wu, K.: Effects of loading frequency and stress reversal on fatigue life of plain concrete. Mag. Concr. Res. 48(177), 361–375 (1996)

    Article  Google Scholar 

  • Zhang, J., Stang, H.: Fatigue performance in flexure of fiber reinforced concrete. ACI Mater. J. 95(1), 58–67 (1998)

    Google Scholar 

  • Zhang, J., Stang, H., Li, V.C.: Experimental study on crack bridging in FRC under uniaxial fatigue tension. J. Mater. Civil Eng. 12, 66–73 (2000)

    Article  Google Scholar 

  • Zhang, J.: Modeling of the influence of fibers on creep of fiber reinforced cementitious composite. Composites Science and Technology 63, 1877–1884 (2003)

    Article  Google Scholar 

  • Zollo, R.F.: Fiber-reinforced concrete: an overview after 30 years of development. Cement Concrete Compos 19(2), 107–122 (1997)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tejchman, J., Kozicki, J. (2010). Epilogue. In: Experimental and Theoretical Investigations of Steel-Fibrous Concrete. Springer Series in Geomechanics and Geoengineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14603-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14603-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14602-2

  • Online ISBN: 978-3-642-14603-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics