Advertisement

Private Web Search with Malicious Adversaries

  • Yehuda Lindell
  • Erez Waisbard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6205)

Abstract

Web search has become an integral part of our lives and we use it daily for business and pleasure. Unfortunately, however, we unwittingly reveal a huge amount of private information about ourselves when we search the web. A look at a user’s search terms over a period of a few months paints a frighteningly clear and detailed picture about the user’s life. In this paper, we build on previous work by Castell\(\grave{\rm a}\)-Roca et al. (Computer Communications 2009) and show how to achieve privacy in web searches efficiently and practically without resorting to full-blown anonymous routing. In contrast to previous work, our protocol is secure in the presence of malicious adversaries.

Keywords

Search Query Random Oracle Search Word Honest Party Malicious Adversary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  2. 2.
    Castellà-Roca, J., Viejo, A., Herrera-Joancomarti, J.: Preserving User’s Privacy in Web Search Engines. Computer Comm. 32(13-14), 1541–1551 (2009)CrossRefGoogle Scholar
  3. 3.
    Chaum, D.: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. Communications of the ACM 24(2), 84–88 (1981)CrossRefGoogle Scholar
  4. 4.
    Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval. Journal of the ACM 45(6), 965–981 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chor, B., Rabin, M.: Achieving Independence in Logarithmic Number of Rounds. In: 6th PODC, pp. 260–268 (1987)Google Scholar
  6. 6.
    Desmedt, Y., Kurosawa, K.: How to Break a Practical MIX and Design a New One. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 557–572. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion Router. In: Proceedings of the 13th USENIX Security Symposium, pp. 303–320 (2004)Google Scholar
  8. 8.
    ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  9. 9.
    Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  10. 10.
    Jakobsson, M.: A Practical MIX. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 448–461. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Ostrovsky, R., Skeith, W.E.: A Survey of Single-Database PIR: Techniques and Applications. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Schnorr, C.P.: Efficient Identification and Signatures for Smart Cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yehuda Lindell
    • 1
  • Erez Waisbard
    • 1
  1. 1.Department of Computer ScienceBar-Ilan UniversityIsrael

Personalised recommendations