Skip to main content

Explicit Coleman Integration for Hyperelliptic Curves

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6197)

Abstract

Coleman’s theory of p-adic integration figures prominently in several number-theoretic applications, such as finding torsion and rational points on curves, and computing p-adic regulators in K-theory (including p-adic heights on elliptic curves). We describe an algorithm for computing Coleman integrals on hyperelliptic curves, and its implementation in Sage.

Keywords

  • Hyperelliptic Curve
  • Weierstrass Point
  • Torsion Point
  • Multiple Zeta
  • Height Pairing

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balakrishnan, J.S.: Local heights on hyperelliptic curves (2010) (in preparation)

    Google Scholar 

  2. Berkovich, V.G.: Integration of one-forms on p-adic analytic spaces. Annals of Mathematics Studies, vol. 162. Princeton University Press, Princeton (2007)

    Google Scholar 

  3. Besser, A.: Coleman integration using the Tannakian formalism. Math. Ann. 322(1), 19–48 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Besser, A.: On the computation of p-adic height pairings on Jacobians of hyperelliptic curves, Sage Days 5 (2007), http://wiki.sagemath.org/days5/sched

  5. Besser, A., de Jeu, R.: Li(p)-service? An algorithm for computing p-adic polylogarithms. Math. Comp. 77(262), 1105–1134 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean analysis: A systematic approach to rigid analytic geometry. Springer, Berlin (1984)

    MATH  Google Scholar 

  7. Castryck, W., Denef, J., Vercauteren, F.: Computing zeta functions of nondegenerate curves. IMRP Int. Math. Res. Pap., Art. ID 72017, 57 (2006)

    Google Scholar 

  8. Coleman, R., de Shalit, E.: p-adic regulators on curves and special values of p-adic L-functions. Invent. Math. 93(2), 239–266 (1988)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Coleman, R.F.: Dilogarithms, regulators and p-adic L-functions. Invent. Math. 69(2), 171–208 (1982)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Coleman, R.F.: Torsion points on curves and p-adic abelian integrals. Ann. of Math (2) 121(1), 111–168 (1985)

    CrossRef  MathSciNet  Google Scholar 

  11. Coleman, R.F., Gross, B.H.: p-adic heights on curves. In: Algebraic Number Theory – in honor of K. Iwasawa. Advanced Studies in Pure Mathematics, vol. 17, pp. 73–81 (1989)

    Google Scholar 

  12. Fresnel, J., van der Put, M.: Rigid analytic geometry and its applications. In: Progress in Mathematics, vol. 218. Birkhäuser Boston Inc., Boston (2004)

    Google Scholar 

  13. Furusho, H.: p-adic multiple zeta values. II. Tannakian interpretations. Amer. J. Math. 129(4), 1105–1144 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Gaudry, P., Gürel, N.: An extension of Kedlaya’s point-counting algorithm to superelliptic curves. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 480–494. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  15. Harvey, D.: Kedlaya’s algorithm in larger characteristic. Int Math Res Notices 2007, 29 (2007), article id no. rnm095

    Google Scholar 

  16. Harvey, D.: Efficient computation of p-adic heights. LMS J. Comput. Math. 11, 40–59 (2008)

    MathSciNet  Google Scholar 

  17. Kedlaya, K.S.: Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology. J. Ramanujan Math. Soc. 16, 323–338 (2001); erratum ibid 18, 417–418 (2003)

    Google Scholar 

  18. Kim, M.: The unipotent Albanese map and Selmer varieties for curves. Publ. Res. Inst. Math. Sci. 45(1), 89–133 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. Kim, M.: Massey products for elliptic curves of rank 1. J. Amer. Math. Soc. 23, 725–747 (2010); Erratum by Balakrishnan, J.S., Kedlaya, K.S., Kim, M.: http://www.ucl.ac.uk/~ucahmki/

  20. Lauder, A.G.B.: Deformation theory and the computation of zeta functions. Proc. London Math. Soc (3) 88(3), 565–602 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Leprévost, F.: Jacobiennes de certaines courbes de genre 2: torsion et simplicité. J. Théor. Nombres Bordeaux 7(1), 283–306 (1995)

    MATH  MathSciNet  Google Scholar 

  22. Mazur, B., Stein, W., Tate, J.: Computation of p-adic heights and log convergence. Doc. Math. Extra, 577–614 (2006) (electronic)

    MathSciNet  Google Scholar 

  23. McCallum, W., Poonen, B.: The method of Chabauty and Coleman (2007) (preprint)

    Google Scholar 

  24. Stein, W.A., et al.: Sage Mathematics Software (Version 4.3.5), The Sage Development Team (2010), http://www.sagemath.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balakrishnan, J.S., Bradshaw, R.W., Kedlaya, K.S. (2010). Explicit Coleman Integration for Hyperelliptic Curves. In: Hanrot, G., Morain, F., Thomé, E. (eds) Algorithmic Number Theory. ANTS 2010. Lecture Notes in Computer Science, vol 6197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14518-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14518-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14517-9

  • Online ISBN: 978-3-642-14518-6

  • eBook Packages: Computer ScienceComputer Science (R0)