Abstract
Coleman’s theory of p-adic integration figures prominently in several number-theoretic applications, such as finding torsion and rational points on curves, and computing p-adic regulators in K-theory (including p-adic heights on elliptic curves). We describe an algorithm for computing Coleman integrals on hyperelliptic curves, and its implementation in Sage.
Keywords
- Hyperelliptic Curve
- Weierstrass Point
- Torsion Point
- Multiple Zeta
- Height Pairing
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Balakrishnan, J.S.: Local heights on hyperelliptic curves (2010) (in preparation)
Berkovich, V.G.: Integration of one-forms on p-adic analytic spaces. Annals of Mathematics Studies, vol. 162. Princeton University Press, Princeton (2007)
Besser, A.: Coleman integration using the Tannakian formalism. Math. Ann. 322(1), 19–48 (2002)
Besser, A.: On the computation of p-adic height pairings on Jacobians of hyperelliptic curves, Sage Days 5 (2007), http://wiki.sagemath.org/days5/sched
Besser, A., de Jeu, R.: Li(p)-service? An algorithm for computing p-adic polylogarithms. Math. Comp. 77(262), 1105–1134 (2008)
Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean analysis: A systematic approach to rigid analytic geometry. Springer, Berlin (1984)
Castryck, W., Denef, J., Vercauteren, F.: Computing zeta functions of nondegenerate curves. IMRP Int. Math. Res. Pap., Art. ID 72017, 57 (2006)
Coleman, R., de Shalit, E.: p-adic regulators on curves and special values of p-adic L-functions. Invent. Math. 93(2), 239–266 (1988)
Coleman, R.F.: Dilogarithms, regulators and p-adic L-functions. Invent. Math. 69(2), 171–208 (1982)
Coleman, R.F.: Torsion points on curves and p-adic abelian integrals. Ann. of Math (2) 121(1), 111–168 (1985)
Coleman, R.F., Gross, B.H.: p-adic heights on curves. In: Algebraic Number Theory – in honor of K. Iwasawa. Advanced Studies in Pure Mathematics, vol. 17, pp. 73–81 (1989)
Fresnel, J., van der Put, M.: Rigid analytic geometry and its applications. In: Progress in Mathematics, vol. 218. Birkhäuser Boston Inc., Boston (2004)
Furusho, H.: p-adic multiple zeta values. II. Tannakian interpretations. Amer. J. Math. 129(4), 1105–1144 (2007)
Gaudry, P., Gürel, N.: An extension of Kedlaya’s point-counting algorithm to superelliptic curves. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 480–494. Springer, Heidelberg (2001)
Harvey, D.: Kedlaya’s algorithm in larger characteristic. Int Math Res Notices 2007, 29 (2007), article id no. rnm095
Harvey, D.: Efficient computation of p-adic heights. LMS J. Comput. Math. 11, 40–59 (2008)
Kedlaya, K.S.: Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology. J. Ramanujan Math. Soc. 16, 323–338 (2001); erratum ibid 18, 417–418 (2003)
Kim, M.: The unipotent Albanese map and Selmer varieties for curves. Publ. Res. Inst. Math. Sci. 45(1), 89–133 (2009)
Kim, M.: Massey products for elliptic curves of rank 1. J. Amer. Math. Soc. 23, 725–747 (2010); Erratum by Balakrishnan, J.S., Kedlaya, K.S., Kim, M.: http://www.ucl.ac.uk/~ucahmki/
Lauder, A.G.B.: Deformation theory and the computation of zeta functions. Proc. London Math. Soc (3) 88(3), 565–602 (2004)
Leprévost, F.: Jacobiennes de certaines courbes de genre 2: torsion et simplicité. J. Théor. Nombres Bordeaux 7(1), 283–306 (1995)
Mazur, B., Stein, W., Tate, J.: Computation of p-adic heights and log convergence. Doc. Math. Extra, 577–614 (2006) (electronic)
McCallum, W., Poonen, B.: The method of Chabauty and Coleman (2007) (preprint)
Stein, W.A., et al.: Sage Mathematics Software (Version 4.3.5), The Sage Development Team (2010), http://www.sagemath.org
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Balakrishnan, J.S., Bradshaw, R.W., Kedlaya, K.S. (2010). Explicit Coleman Integration for Hyperelliptic Curves. In: Hanrot, G., Morain, F., Thomé, E. (eds) Algorithmic Number Theory. ANTS 2010. Lecture Notes in Computer Science, vol 6197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14518-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-14518-6_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14517-9
Online ISBN: 978-3-642-14518-6
eBook Packages: Computer ScienceComputer Science (R0)