Skip to main content

Role of Descending Inhibition in Transport of Fluid Contents in the Colon

  • Conference paper
6th World Congress of Biomechanics (WCB 2010). August 1-6, 2010 Singapore

Part of the book series: IFMBE Proceedings ((IFMBE,volume 31))

  • 189 Accesses

Abstract

Constipation, a common cause of morbidity, is estimated to affect between 15 and 27% of the western world. While often perceived as a benign, easily treated condition, a number of studies confirm a significant adverse impact on health-related quality of life which correlates with severity of constipation. Available evidence implicates abnormal colonic contractility in severe constipation. However, measurement of human colonic motility poses substantial methodological challenges.

Understanding the mechanisms that drive motility in the colon relies on understanding the fluid-structure interactions between intestinal walls and the colonic contents. Sequences of peristaltic muscular contractions in the intestinal walls work to transport and mix the fluid contents. Unfortunately, the colon is relatively inaccessible which makes flow measurements of the internal fluid contents difficult.

An alternative is to develop a computational flow model that enables prediction of the effect of muscular contractions on fluid transport. Grid-based Computational Fluid Dynamics models are becoming more commonly used to simulate biological systems but they are unable to accurately model highly deformable systems due to the static nature of the grid. Fully Lagrangian, particle-based methods such as Smoothed Particle Hydrodynamics (SPH) are a promising alternative for modelling biological systems.

A length of colon is modeled as a cylindrical section with periodic ends containing a viscous Newtonian fluid. Sequences of peristaltic muscular contraction are applied to sections of the colon as elastic forces which then drive internal fluid motion. The colon diameter at each point is determined by the force balance between the muscular contraction and the fluid stress. We demonstrate here the differences in fluid pressures and transport for cases with and without Descending Inhibition (DI) (which is represented by a muscular relaxation travelling in front of the contractile wave in the colon walls).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 International Federation for Medical and Biological Engineering

About this paper

Cite this paper

Sinnott, M.D., Dinning, P.G., Cleary, P.W., Arkwright, J., J.W.Fernandez, Wang, C.X. (2010). Role of Descending Inhibition in Transport of Fluid Contents in the Colon. In: Lim, C.T., Goh, J.C.H. (eds) 6th World Congress of Biomechanics (WCB 2010). August 1-6, 2010 Singapore. IFMBE Proceedings, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14515-5_257

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14515-5_257

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14514-8

  • Online ISBN: 978-3-642-14515-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics