Skip to main content

Interactions Between Bacteriophage DinoHI and a Network of Integrated Elements Which Control Virulence in Dichelobacter nodosus, the Causative Agent of Ovine Footrot

  • Chapter
  • First Online:
Biocommunication in Soil Microorganisms

Part of the book series: Soil Biology ((SOILBIOL,volume 23))

  • 2116 Accesses

Abstract

The anaerobic bacterium Dichelobacter nodosus is the principal causative agent of ovine footrot, a mixed bacterial infection of the hoof. Although the bacterium only survives for a few days in soil, this period is crucial for transmission of the disease as sheep are infected by walking through soil or pasture contaminated with infectious bacteria. The D. nodosus genome is only 1.3Mb in size and has a dearth of genes encoding regulatory proteins. A series of genetic elements which integrate into the genome has been identified and we have proposed that these integrated genetic elements control the expression of adjacent genes encoding global regulators of virulence. The intA, intB, intC and intD elements integrate next to csrA or pnpA while the vrl integrates next to ssrA. CsrA, PnpA and the ssrA gene product, a 10SaRNA, have been shown to act as global virulence regulators in other bacteria. We have also identified a bacteriophage, DinoHI, which is integrated into the genome of some D. nodosus strains. Sequence analyses suggest that there are many possible interactions between these integrated genetic elements. The vrl contains a copy of the DinoHI packaging site, indicating that the vrl may be transferred between strains by the bacteriophage. DinoHI and the intB element have a common repressor gene, suggesting that maintenance of the integrated state of these two genetic elements is co-ordinately controlled. Similarly, a DNA segment resembling the bacteriophage P4 immunity region is present on the intA, intC and intD elements and may be responsible for maintaining these three genetic elements in the integrated state. The features of the intD element suggest that it is self-transmissible and also capable of mobilising the intA element. Exchange of sequences between these genetic elements may also occur. We discuss here evidence for a network of interactions between these genetic elements with implications for the control of virulence in D. nodosus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnard FM, Loughlin MF, Fainberg HP, Messenger MP, Ussery DW, Williams P, Jenks PJ (2004) Global regulation of virulence and the stress response by CsrA in the highly adapted human gastric pathogen Helicobacter pylori. Mol Microbiol 51:15–32

    Article  PubMed  CAS  Google Scholar 

  • Beveridge WIB (1941) Footrot in sheep: a transmissible disease due to infection with Fusiformis nodosus. CSIRO Bull 140:1–40

    Google Scholar 

  • Billington SJ, Huggins AS, Johanesen PA, Crellin PK, Cheung JK, Katz ME, Wright CL, Haring V, Rood JI (1999) Complete nucleotide sequence of the 27-kilobase virulence related locus (vrl) of Dichelobacter nodosus: evidence for extrachromosomal origin. Infect Immun 67:1277–1286

    PubMed  CAS  Google Scholar 

  • Billington SJ, Sinistaj M, Cheetham BF, Ayres A, Moses EK, Katz ME, Rood JI (1996) Identification of a native Dichelobacter nodosus plasmid and implications for the evolution of the vap regions. Gene 172:111–116

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield GA, Whittle G, McDonagh MB, Katz ME, Cheetham BF (1997) Analysis of sequences flanking the vap regions of Dichelobacter nodosus: evidence for multiple integration events, a killer system, and a new genetic element. Microbiology 143:553–562

    Article  PubMed  CAS  Google Scholar 

  • Boyd AC, Archer JA, Sherratt DJ (1989) Characterization of the ColE1 mobilization region and its protein products. Mol Gen Genet 217:488–498

    Article  PubMed  CAS  Google Scholar 

  • Cheetham BF, Katz ME (1995) A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol Microbiol 18:201–208

    Article  PubMed  CAS  Google Scholar 

  • Cheetham BF, Parker D, Bloomfield GA, Shaw BE, Sutherland M, Hyman JA, Druitt J, Kennan RM, Rood JI, Katz ME (2008) Isolation of the bacteriophage DinoHI from Dichelobacter nodosus and its interactions with other integrated genetic elements. Open Microbiol J 2:1–9

    Article  PubMed  CAS  Google Scholar 

  • Cheetham BF, Tattersall DB, Bloomfield GA, Rood JI, Katz ME (1995) Identification of a gene encoding a bacteriophage-related integrase in a vap region of the Dichelobacter nodosus genome. Gene 162:53–58

    Article  PubMed  CAS  Google Scholar 

  • Cheetham BF, Whittle G, Katz ME (1999) Are the vap regions of the Dichelobacter nodosus genome pathogenicity islands? In: Kaper JB, Hacker J (eds) Pathogenicity islands. ASM Press, Washington, pp 203–218

    Google Scholar 

  • Claxton PD, Ribeiro LA, Egerton JR (1983) Classification of Bacteroides nodosus by agglutination tests. Aust Vet J 60:331–334

    Article  PubMed  CAS  Google Scholar 

  • Clements MO, Eriksson S, Thompson A, Lucchini S, Hinton JC, Normark S, Rhen M (2002) Polynucleotide phosphorylase is a global regulator of virulence and persistency in Salmonella enterica. Proc Natl Acad Sci USA 99:8784–8789

    Article  PubMed  CAS  Google Scholar 

  • Dalrymple B, Mattick JS (1987) An analysis of the organization and evolution of type 4 fimbrial (MePhe) subunit proteins. J Mol Evol 25:261–269

    Article  PubMed  CAS  Google Scholar 

  • Deho G, Zangrossi S, Sabbattini P, Sironi G, Ghisotti D (1992) Bacteriophage P4 immunity controlled by small RNAs via transcription termination. Mol Microbiol 6:3415–3425

    Article  PubMed  CAS  Google Scholar 

  • Depiazzi LJ, Richards RB (1985) Motility in relation to virulence of Bacteroides nodosus. Vet Microbiol 10:107–116

    Article  PubMed  CAS  Google Scholar 

  • Depiazzi LJ, Rood JI (1984) The thermostability of proteases from virulent and benign strains of Bacteroides nodosus. Vet Microbiol 9:227–236

    Article  PubMed  CAS  Google Scholar 

  • Dewhirst FE, Paster BJ, La Fontaine S, Rood JI (1990) Transfer of Kingella indologenes (Snell and Lapage 1976) to the genus Suttonella gen. nov. as Suttonella indologenes comb. nov.; transfer of Bacteroides nodosus (Beveridge 1941) to the genus Dichelobacter gen. nov. as Dichelobacter nodosus comb. nov.; and assignment of the genera Cardiobacterium, Dichelobacter, and Suttonella to Cardiobacteriaceae fam. nov. in the gamma division of Proteobacteria on the basis of 16S rRNA sequence comparisons. Int J Syst Bacteriol 40:426–433

    Article  PubMed  CAS  Google Scholar 

  • Egerton JR, Yong WK, Riffkin GG (1988) Footrot and foot abscess of ruminants. CRC Press, Florida

    Google Scholar 

  • Ghisotti D, Chiaramonte R, Forti F, Zangrossi S, Sironi G, Deho G (1992) Genetic analysis of the immunity region of phage-plasmid P4. Mol Microbiol 6:3405–3413

    Article  PubMed  CAS  Google Scholar 

  • Han X, Kennan RM, Davies JK, Reddacliff LA, Dhungyel OP, Whittington RJ, Turnbull L, Whitchurch CB, Rood JI (2008) Twitching motility is essential for virulence in Dichelobacter nodosus. J Bacteriol 190:3323–3335

    Article  PubMed  CAS  Google Scholar 

  • Haring V, Billington SJ, Wright CL, Huggins AS, Katz ME, Rood JI (1995) Delineation of the virulence-related locus (vrl) of Dichelobacter nodosus. Microbiology 149:2081–2086

    Article  Google Scholar 

  • Julio SM, Heithoff DM, Mahan MJ (2000) ssrA (tmRNA) plays a role in Salmonella enterica Serovar Typhimurium pathogenesis. J Bacteriol 182:1558–1563

    Article  PubMed  CAS  Google Scholar 

  • Katz ME, Howarth PM, Yong WK, Riffkin GG, Depiazzi LJ, Rood JI (1991) Identification of three gene regions associated with virulence in Dichelobacter nodosus, the causative agent of ovine footrot. J Gen Microbiol 137:2117–2124

    Article  PubMed  CAS  Google Scholar 

  • Katz ME, Strugnell RA, Rood JI (1992) Molecular characterization of a genomic region associated with virulence in Dichelobacter nodosus. Infect Immun 60:4586–4592

    PubMed  CAS  Google Scholar 

  • Katz ME, Wright CL, Gartside TS, Cheetham BF, Doidge CV, Moses EK, Rood JI (1994) Genetic organization of the duplicated vap region of the Dichelobacter nodosus genome. J Bacteriol 176:2663–2669

    PubMed  CAS  Google Scholar 

  • Kennan RM, Dhungyel OP, Whittington RJ, Egerton JR, Rood JI (2001) The type IV fimbrial subunit gene (fimA) of Dichelobacter nodosus is essential for virulence, protease secretion, and natural competence. J Bacteriol 183:4451–4458

    Article  PubMed  CAS  Google Scholar 

  • Laing EA, Egerton JR (1978) The occurrence, prevalence and transmission of Bacteroides nodosus infection in cattle. Res Vet Sci 24:300–304

    PubMed  CAS  Google Scholar 

  • Lawhon SD, Frye JG, Suyemoto M, Porwollik S, McClelland M, Altier C (2003) Global regulation by CsrA in Salmonella typhimurium. Mol Microbiol 48:1633–1645

    Article  PubMed  CAS  Google Scholar 

  • Lindqvist BH, Deho G, Calendar R (1993) Mechanisms of genome propagation and helper exploitation by satellite phage P4. Microbiol Rev 57:683–702

    PubMed  CAS  Google Scholar 

  • Molofsky AB, Swanson MS (2003) Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication. Mol Microbiol 50:445–461

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee A, Cui Y, Liu Y, Dumenyo CK, Chatterjee AK (1996) Global regulation in Erwinia species by Erwinia carotovora rsmA, a homologue of Escherichia coli csrA: repression of secondary metabolites, pathogenicity and hypersensitive reaction. Microbiology 142:427–434

    Article  PubMed  CAS  Google Scholar 

  • Myers GS, Parker D, Al Hasani K, Kennan RM, Seemann T, Ren Q, Badger JH, Selengut JD, Deboy RT, Tettelin H, Boyce JD, McCarl VP, Han X, Nelson WC, Madupu R, Mohamoud Y, Holley T, Fedorova N, Khouri H, Bottomley SP, Whittington RJ, Adler B, Songer JG, Rood JI, Paulsen IT (2007) Genome sequence and identification of candidate vaccine antigens from the animal pathogen Dichelobacter nodosus. Nat Biotechnol 25:569–575

    Article  PubMed  CAS  Google Scholar 

  • Palanisamy SKA, Fletcher C, Tanjung L, Katz ME and Cheetham BF (2010) Deletion of the C-terminus of polynucleotide phosphorylase increases twitching motility, a virulence characteristic of the anaerobic bacterial pathogen Dichelobacter nodosus. FEMS Microbiol Lett 302:39–45

    Article  PubMed  CAS  Google Scholar 

  • Stewart DJ (1979) The role of elastase in the differentiation of Bacteroides nodosus infections in sheep and cattle. Res Vet Sci 27:99–105

    PubMed  CAS  Google Scholar 

  • Stewart DJ (1989) Footrot of sheep. In: Egerton JR, Yong WK, Rifkin GG (eds) Footrot and foot abscess of ruminants. CRC Press, Florida, pp 5–45

    Google Scholar 

  • Tanjung LR, Whittle G, Shaw BE, Bloomfield GA, Katz ME, Cheetham BF (2009) The intD mobile genetic element from Dichelobacter nodosus, the causative agent of ovine footrot, is associated with the benign phenotype. Anaerobe 15(5):219–224

    Article  PubMed  CAS  Google Scholar 

  • Tian QB, Ohnishi M, Tabuchi A, Terawaki Y (1996) A new plasmid-encoded killer gene system: cloning, sequencing, and analyzing hig locus of plasmid Rts1. Biochem Biophys Res Commun 220:280–284

    Article  PubMed  CAS  Google Scholar 

  • Whittle G, Bloomfield GA, Katz ME, Cheetham BF (1999) The site-specific integration of genetic elements may modulate thermostable protease production, a virulence factor in Dichelobacter nodosus, the causative agent of ovine footrot. Microbiology 145:2845–2855

    PubMed  CAS  Google Scholar 

  • Withey JH, Friedman DI (2002) The biological roles of trans-translation. Curr Opin Microbiol 5:154–159

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian F. Cheetham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheetham, B.F., Whittle, G., Ting, M., Katz, M.E. (2011). Interactions Between Bacteriophage DinoHI and a Network of Integrated Elements Which Control Virulence in Dichelobacter nodosus, the Causative Agent of Ovine Footrot. In: Witzany, G. (eds) Biocommunication in Soil Microorganisms. Soil Biology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14512-4_9

Download citation

Publish with us

Policies and ethics