Skip to main content

Soil Bacteria and Bacteriophages

  • Chapter
  • First Online:
Biocommunication in Soil Microorganisms

Part of the book series: Soil Biology ((SOILBIOL,volume 23))

Abstract

Bacteriophages are an important integral part of soil bacterial ecology. From the evolutionary point of view (presumptively based on one of the following theories: regressive, cellular origin, and coevolution), it is still unclear how bacteriophages emerged. Nonetheless they are the most abundant “life forms” in oceans and not negligible in soil. These microorganisms are a vast reservoir of genetic elements that contributes to biological diversity. As such, bacteriophages influence bacterial soil communities and consequently the biogeochemical cycles through genes transfer impacting genomic evolution. To make the picture more complicated, it should be perceived that soil harbors beside bacteria and bacteriophages also a large variety of plants and organisms all living side-by-side and continuously interacting. This interaction is continuous under so-called “natural conditions”; however, since anthropogenic intervention became a major factor (mainly for the last two centuries and on), it should be taken seriously in consideration as an important catalyst that our knowledge in relation to is still very limited. Compared with bacteria, bacteriophages have fast multiplication and simple morphology, making their study straightforward. In the new era of advanced genomics, bacteriophages seem to play an important role in our understanding of how life evolved especially in soil comprising a large variety of minerals. The understanding of bacteriophages’ role in soil is still in his infancy, yet based on modern molecular biology methods, new aspects of biological diversity will yield exciting breakthroughs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon ST (1989) Selection for bacteriophage latent period length by bacterial density: a theoretical examination. Microb Ecol 18:79–88

    Google Scholar 

  • Ackermann H-W (2003) Bacteriophage observations and evolution. Res Microbiol 154:245–251

    PubMed  CAS  Google Scholar 

  • Ackermann H-W (2007) 5500 Phages examined in the electron microscope. Arch Virol 152:277–243

    Google Scholar 

  • Ackermann H-W (2009) Phage classification and characterization. Method Mol Biol 501:127–140

    CAS  Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology, 2nd edn. John Wiley and Sons, New York, NY

    Google Scholar 

  • Althauser M, Samsonoff WA, Anderson C, Conti SF (1972) Isolation and preliminary characterization of bacteriophages for Bdellovibrio bacteriovorus. J Virol 10:516–523

    PubMed  CAS  Google Scholar 

  • Anonymous (Soil Survey Division Staff) (1993) Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.

    Google Scholar 

  • Armon R, Araujo R, Kott Y, Lucena F, Jofre J (1997) Bacteriophages of enteric bacteria in drinking water, comparison of their distribution in two countries. J Appl Microbiol 83:627–633

    PubMed  CAS  Google Scholar 

  • Armon R, Cabelli VJ (1988) Phage f2 desorption from clay (bentonite and kaolinite) using non-ionic detergents, beef extract and chaotropic agent. Can J Microbiol 34:1022–1024

    PubMed  CAS  Google Scholar 

  • Ashelford KE, Fry JC, Bailey MJ, Jeffries AR, Day MJ (1999) Characterization of six bacteriophages of Serratia liquefaciens CP6 isolated from the sugar beet phytosphere. Appl Environ Microbiol 65:1959–1965

    PubMed  CAS  Google Scholar 

  • Ashelford KE, Norris SJ, Fry JC, Bailey MJ, Day MJ (2000) Seasonal population dynamics and interactions of competing bacteriophages and their host in the rhizosphere. Appl Environ Microbiol 66:4193–4199

    PubMed  CAS  Google Scholar 

  • Avrahami S, Conrad R (2003) Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures. Appl Environ Microbiol 69:6152–6164

    PubMed  CAS  Google Scholar 

  • Avrahami S, Conrad R, Braker G (2002) Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers. Appl Environ Microbiol 68:5685–5692

    PubMed  CAS  Google Scholar 

  • Baess I (1971) Report on a pseudolysogenic mycobacterium and a review of the literature concerning pseudolysogeny. Acta Pathol Microbiol Scand 79:428–434

    CAS  Google Scholar 

  • Baker GC, Cowan DA (2004) 16S rDNA primers and the unbiased assessment of thermophile diversity. Biochem Soc T 32:218–221

    Google Scholar 

  • Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Meth 55:541–555

    Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exper Botany 56:1761–1778

    CAS  Google Scholar 

  • Barns SM, Takala SL, Ruske R (1999) Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65:1731–1737

    PubMed  CAS  Google Scholar 

  • Bartlett CLR (1996) An overview of emerging foodborne and waterborne diseases. East Medit Health J 2:51–60

    Google Scholar 

  • Bastida F, Zsolnay A, Hernández T, García C (2008) Past, present and future of soil quality indices: a biological perspective. Geoderma 147:159–171

    CAS  Google Scholar 

  • Bergsma-Vlami M, Prins ME, Staats M, Raaijmakers JM (2005) Assessment of genotypic diversity of antibiotic-producing Pseudomonas species in the rhizosphere by denaturing gradient gel electrophoresis. Appl Environ Microbiol 71:993–1003

    PubMed  CAS  Google Scholar 

  • Bertani G (2004) Guest commentary: lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J Bacteriol 186:595–600

    PubMed  CAS  Google Scholar 

  • Bogopolśkii MD, Korneeva NP (1940) An investigation of the effect of bacteriophages against Bacillus denitrificans II. Mikrobiologichnii Zhurnal (1934–1977) 7:75–83

    Google Scholar 

  • Bongiorni L, Magagnini M, Armeni M, Noble R, Danovaro R (2005) Viral production, decay rates, and life strategies along a trophic gradient in the north Adriatic sea. Appl Environ Microb 71:6644–6650

    CAS  Google Scholar 

  • Borneman J, Skroch PW, Osullivan KM, Palus JA, Rumjanek NG et al (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62:1935–1943

    PubMed  CAS  Google Scholar 

  • Boutte C, Grubisic S, Balthasart P, Wilmotte A (2006) Testing of primers for the study of cyanobacterial molecular diversity by DGGE. J Microbiol Methods 65:542–550

    PubMed  CAS  Google Scholar 

  • Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, Azam F, Rohwer F (2002) Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci USA 99:14250–14255

    PubMed  CAS  Google Scholar 

  • Brian F, Cheetham BF, Katz ME (1995) A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol Microbiol 18:201–208

    Google Scholar 

  • Brüssow H, Hendrix RW (2002) Phage genomics: small is beautiful. Cell 108:13–16

    PubMed  Google Scholar 

  • Brüssow H, Canchaya C, Hardt W-D (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Molec Biol Rev 68:560–602

    Google Scholar 

  • Burroughs NJ, Marsh P, Wellington EM (2000) Mathematical analysis of growth and interaction dynamics of streptomycetes and a bacteriophage in soil. Appl Environ Microbiol 66:3868–3877

    PubMed  CAS  Google Scholar 

  • Cardinale ML, Brusetti P, Quatrini S, Borin AM, Puglia A et al (2004) Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl Environ Microbiol 70:6147–6156

    PubMed  CAS  Google Scholar 

  • Carlander A, Aronsson P, Allestam G, Stenström TA, Perttu K (2000) Transport and retention of bacteriophages in two types of willow-cropped lysimeters. J Environ Sci Health A Tox Hazard Subst Environ Eng 35:1477–1492

    Google Scholar 

  • Casas V, Miyake J, Balsley H, Roark J, Telles S, Leeds S et al (2006) Widespread occurrence of phage-encoded exotoxin genes in terrestrial and aquatic environments in SouthernCalifornia. FEMS Microbiol Lett 261:141–149

    PubMed  CAS  Google Scholar 

  • Chattopadhyay S, Breidenbach GP, Lyon WG, Wilson JT (2000) Effect of environmental factors in transport of viruses in subsurface system. Preprints of Extended Abstracts presented at the ACS National Meeting, American Chemical Society, Division of Environmental Chemistry, vol 40, pp 375–377

    Google Scholar 

  • Chebotar VK, Asis CA, Akao S (2001) Production of growth promoting substances and high colonization ability of rhizobacteria enhance the nitrogen fixation of soybean when inoculated with Bradyrhizobium japonicum. Biol Fert Soils 34:427–432

    CAS  Google Scholar 

  • Cheetham BF, Katz ME (1995) A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol Microbiol 18:201–208

    Google Scholar 

  • Cheng L, Chetochine AS, Pepper IL, Brusseau ML (2007) Influence of DOC on MS-2 bacteriophage transport in a sandy soil. Water Air Soil Pollut 178:315–322

    CAS  Google Scholar 

  • Chetochine AS, Brusseau ML, Gerba CP, Pepper IL (2006) Leaching of phage from class B biosolids and potential transport through soil. Appl Environ Microbiol 72:665–671

    PubMed  CAS  Google Scholar 

  • Chibani-Chennoufi S, Bruttin A, Dillmann M-L, Brüssow H (2004) Phage–host interaction: an ecological perspective. J Bacteriol 186:3677–3686

    PubMed  CAS  Google Scholar 

  • Choi S, Jeliazkov I, Jiang SC (2009) Lysogens and free viruses in fresh, brackish, and marine waters: a Bayesian analysis. FEMS Microbiol Ecol 69:243–254

    PubMed  CAS  Google Scholar 

  • Chu Y, Jin Y, Baumann T, Yates MV (2003) Effect of soil properties on saturated and unsaturated virus transport through columns. J Environ Qual 32:2017–2025

    PubMed  CAS  Google Scholar 

  • Clark JS, Campbell JH, Grizzle H, Acosta-Martìnez V, Zak JC (2009) Soil microbial community response to drought and precipitation variability in the Chihuahuan Desert. Microb Ecol 57:248–260

    PubMed  Google Scholar 

  • Cochran PK, Paul JH (1998) Seasonal abundance of lysogenic bacteria in a subtropical estuary. Appl Environ Microb 64:2308–2312

    CAS  Google Scholar 

  • Corapcioglu MY, Vogel JR, Munster CL, Pillai SD, Dowd S, Wang S (2006) Virus transport experiments in a sandy aquifer. Water Air Soil Pollut 169:47–65

    CAS  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    PubMed  CAS  Google Scholar 

  • Danovaro R, Dell’anno A, Trucco A, Serresi M, Vanucci S (2001) Determination of virus abundance in marine sediments. Appl Environ Microbiol 67:1384–1387

    PubMed  CAS  Google Scholar 

  • Danovaro R, Manini E, Dell’Anno A (2002) Higher abundance of bacteria than of viruses in deep Mediterranean sediments. Appl Environ Microbiol 68:1468–1472

    PubMed  CAS  Google Scholar 

  • D’Herelle F (1917) Sur un microbe invisible antagonistic des bacilles dysenteriques. C R Acad Sci Paris 165:373–375

    Google Scholar 

  • Dhritiman G, Krishnakali R, Williamson KE, White DC, Sublette WKE, KL RM (2008) Prevalence of lysogeny among soil bacteria and presence of 16S rRNA and trzN genes in viral-community DNA. Appl Environ Microbiol 74:495–502

    Google Scholar 

  • Diallo MD, Willems A, Vloemans N, Cousin S, Vandekerckhove TT, de Lajudie P, Neyra M, Vyverman W, Gillis M, Van der Gucht K (2004) Polymerase chain reaction denaturing gradient gel electrophoresis analysis of the N2-fixing bacterial diversity in soil under Acacia tortilis ssp. raddiana and Balanites aegyptiaca in the dryland part of Senegal. Environ Microbiol 6:400–415

    CAS  Google Scholar 

  • Dröge M, Pühler A, Selbitschka W (1999) Horizontal gene transfer among bacteria in terrestrial and aquatic habitats as assessed by microcosm and field studies. Biol Fertil Soils 29:221–245

    Google Scholar 

  • Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) (2007) The prokaryotes: a handbook on the biology of bacteria, vol 1–7, 3rd edn. Springer-Verlag, New York

    Google Scholar 

  • Eberhard AA, Burlingame L, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochem 20:2444–2449

    CAS  Google Scholar 

  • Epstein PR (1995) Emerging diseases and ecosystem instability: new threats to public health. Am J Public Health 85:168–172

    PubMed  CAS  Google Scholar 

  • Franchi M, Gallori E (2004) Origin, persistence and biological activity of genetic material in prebiotic habitats. Orig Life Evolut Biosph 34:133–141

    CAS  Google Scholar 

  • Friedrich B, Meyer M, Schlegel HG (1983) Transfer and expression of the herbicide-degrading plasmid pJP4 in aerobic autotrophic bacteria. Arch Microbiol 134:92–97

    PubMed  CAS  Google Scholar 

  • Gallori E, Biondi E, Franchi M (2004) Mineral surfaces as a cradle of primordial genetic material. Cell Orig Life Extr Habit Astrobiol 7:145–148

    CAS  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2003) Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microb Ecol 45:302–316

    PubMed  CAS  Google Scholar 

  • Germida JJ, Khachatourians GG (1988) Transduction of Escherichia coli in soil. Can J Microbiol 43:190–193

    Google Scholar 

  • Gino E, Starosvertsky J, Armon R (2007) Bacteriophages ecology in a small settlement sewer system in northern part of Israel as related to their indicative role in sewage pollution of drinking water. Environ Microbiol 9:2407–2416

    PubMed  CAS  Google Scholar 

  • Golovchenko AV, Dobrovol’skaya TG, Fedoritenko MS, Dobrovol’skaya NG, Zvyagintsev DG (2001) The structure of bacterial complexes in the Protva River floodplain. Microbiol (Mosc, Russian Federation) 70:600–605

    CAS  Google Scholar 

  • Gordon SV, Heym B, Parkhill J, Barrell B, Cole ST (1999) New insertion sequences and a novel repeated sequence in the genome of Mycobacterium tuberculosis H37Rv. Microbiol (Reading Engl) 145:881–892

    CAS  Google Scholar 

  • Griffiths AJF, Gelbart WM, Lewontin RC, Miller JH, Freeman WH (eds) (2002) Modern genetic analysis: integrating genes and genomes, 2nd edn. W.H. Freeman & Company (Pub), New York

    Google Scholar 

  • Guan H, Schulze-Makuch D, Schaffer S, Pillai SD (2003) The effect of critical pH on virus fate and transport in saturated porous medium. Ground Water 41:701–708

    PubMed  CAS  Google Scholar 

  • Guppy CN, Menzies NW, Moody PW, Blamey FPC (2005) Competitive sorption reactions between phosphorus and organic matter in soil: a review. Austr J Soil Res 43:189–202

    CAS  Google Scholar 

  • Gupta RS (2000) The phylogeny of Proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24:367–402

    PubMed  CAS  Google Scholar 

  • Gupta RS (2005) Protein signatures distinctive of alpha Proteobacteria and its subgroups and a model for α-proteobacterial evolution. Crit Rev Microbiol 31:101–135

    PubMed  CAS  Google Scholar 

  • Gupta RS (2006) Molecular signatures (unique proteins and conserved indels) that are specific for the epsilon proteobacteria (Campylobacterales). BMC Genomics 7:167. doi:10.1186/1471-2164-7-167

    PubMed  Google Scholar 

  • Gupta V, Hohnson WP, Shafieian P, Ryu H, Alum A, Abbaszdegan M, Hubbs SA, Rauch-Williams T (2009) Riverbank filtration: comparison of pilot scale transport with theory. Environ Sci Technol 43:669–676

    PubMed  CAS  Google Scholar 

  • Hanczyc MH, Mansy SS, Szostak JW (2007) Mineral surface directed membrane assembly. Orig Life Evol Biosph 37:67–82

    PubMed  CAS  Google Scholar 

  • Hatfull GF (2008) Bacteriophage genomics. Curr Opin Microbiol 11:447–453

    PubMed  CAS  Google Scholar 

  • Henckel T, Friedrich M, Conrad R (1999) Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl Environ Microbiol 65:1980–1990

    PubMed  CAS  Google Scholar 

  • Henckel T, Jackel U, Schnell S, Conrad R (2000) Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Appl Environ Microbiol 66:1801–1808

    PubMed  CAS  Google Scholar 

  • Hendrix RW (2003) Bacteriophage genomics. Curr Opin Microbiol 6:506–511

    PubMed  CAS  Google Scholar 

  • Herron PR, Wellington EMH (1994) Population dynamics of phage-host interactions and phage-conversion of streptomyces in soil. FEMS Microbiol Ecol 14:25–32

    Google Scholar 

  • Herron PR (2004) Phage ecology and genetic exchange in soil. In: Kowalchuk GA, de Bruijn FJ, Head IM, Akkermans AD, van Elsas JD (eds) Molecular microbial ecology manual (2nd ed). Kluwer Academic, Dordrecht, Section 5.07:1173–1186

    Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    PubMed  CAS  Google Scholar 

  • Hewitt A (2009) ‘Soils’, Te Ara – the Encyclopedia of New Zealand, updated 1 Mar 2009. URL: http://www.TeAra.govt.nz/en/soils/6/2

  • Hiramatsu K, Cui L, Kuroda M, Ito T (2001) The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol 9:486–493

    PubMed  CAS  Google Scholar 

  • Hoffmann T, Horz HP, Kemnitz D, Conrad R (2002) Diversity of the particulate methane monooxygenase gene in methanotrophic samples from different rice field soils in China and the Philippines. Syst Appl Microbiol 25:267–274

    PubMed  CAS  Google Scholar 

  • Holden PA, Fierer N (2005) Microbial processes in the vadose zone. Vadose Zone J 4:1–21

    CAS  Google Scholar 

  • Holmfeldt K, Middelboe M, Nybroe O, Lasse Riemann L (2007) Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their Flavobacterium hosts. Appl Environ Microbiol 73:6730–6739

    PubMed  CAS  Google Scholar 

  • Hornek R, Pommerening-Roser A, Koops H-P, Farnleitner AH, Kreuzinger N, Kirschner A, Mach RL (2006) Primers containing universal bases reduce multiple amoA gene specific DGGE band patterns when analyzing the diversity of beta-ammonia oxidizers in the environment. J Microbiol Methods 66:147–155

    PubMed  CAS  Google Scholar 

  • Hurst CJ (1988) Influence of aerobic microorganisms upon virus survival in soil. Can J Microbiol 34:696–699

    PubMed  CAS  Google Scholar 

  • Hurst CJ, Gerba CP, Cech I (1980) Effects of environmental variables and soil characteristics on virus survival in soil. Appl Environ Microbiol 40:1067–1079

    PubMed  CAS  Google Scholar 

  • Ibekwe AM, Papiernik SK, Gan J, Yates SR, Yang CH, Crowley DE (2001) Impact of fumigants on soil microbial communities. Appl Environ Microbiol 67:3245–3257

    PubMed  CAS  Google Scholar 

  • Jensen S, Ovreas L, Daae FL, Torsvik V (1998) Diversity in methane enrichments from agricultural soil revealed by DGGE separation of PCR amplified 16S rDNA fragments. FEMS Microbiol Ecol 26:17–26

    CAS  Google Scholar 

  • Jiang SC, Paul JH (1996) Occurrence of lysogenic bacteria in marine microbial communities as determined by prophage induction. Mar Ecol Prog Ser 142:27–38

    Google Scholar 

  • Kaszubiak H (1968) Effect of herbicides on Rhizobium. III. Influence of herbicides on mutation. Acta Microbiol Pol 17:51–57

    PubMed  CAS  Google Scholar 

  • Keel C, Défago G (1997) Interactions between beneficial soil bacteria and root pathogens: mechanisms and ecological impact. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell Science, London, pp 27–46

    Google Scholar 

  • Keel C, Ucurum Z, Michaux P, Adrian M, Haas D (2002) Deleterious impact of a virulent bacteriophage on survival and biocontrol activity of Pseudomonas fluorescens strain CHA0 in natural soil. Mol Plant Microbe Interact 15:567–576

    PubMed  CAS  Google Scholar 

  • Keitarou K, Yoshifumi I (2004) Physiological roles of capsule poly-γ-glutamate in Bacillus subtilis. Curr Trends Microbiol 1:59–67

    Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236

    PubMed  CAS  Google Scholar 

  • Kidambi SP, Ripp S, Miller RV (1994) Evidence for phage-mediated gene transfer among Pseudomonas aeruginosa strains on the phylloplane. Appl Environ Microbiol 60:496–500

    PubMed  CAS  Google Scholar 

  • Koonin EV, Senkevich TG, Dolja VV (2006) The ancient virus world and evolution of cells. Biol Direct 2006, 1: no pages given. 29doi:10.1186/1745-6150-1-29

    Google Scholar 

  • Kowalchuk GA, Stephen JR, Deboer W, Prosser JI, Embley TM, Woldendorp JW (1997) Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Microbiol 63:1489–1497

    PubMed  CAS  Google Scholar 

  • Krylov VN (2003) The role of horizontal gene transfer by bacteriophages in the origin of pathogenic bacteria. Russ J Genetics 39:483–504

    CAS  Google Scholar 

  • Labbe D, Margesin R, Schinner F, Whyte LG, Greer CW (2007) Comparative phylogenetic analysis of microbial communities in pristine and hydrocarbon-contaminated Alpine soils. FEMS Microbiol Ecol 59:466–475

    PubMed  CAS  Google Scholar 

  • Lambais MR, Otero XL, Cury JC (2008) Bacterial communities and biogeochemical transformations of iron and sulfur in a high saltmarsh soil profile. Soil Biol Biochem 40:2854–2864

    CAS  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant–microbe–soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115

    CAS  Google Scholar 

  • Lapidot A, Yaron S (2009) Transfer of Salmonella enterica serovar typhimurium from contaminated irrigation water to parsley is dependent on curli and cellulose, the biofilm matrix components. J Food Protect 72:618–623

    Google Scholar 

  • Lebedinsky AV, Chernyh NA, Bonch-Osmolovskaya EA (2007) Phylogenetic systematics of microorganisms inhabiting thermal environments. Biochemistry (Mosc) 72:1299–1312

    CAS  Google Scholar 

  • Lehman R (2007) Microbial distributions and their potential controlling factors in terrestrial subsurface environments. In: Franklin R, Mills A (eds) The spatial distribution of microbes in the environment. Springer, Dordrecht, The Netherlands, pp 135–178

    Google Scholar 

  • Lewandowski Z, Beyenal H (2007) Fundamentals of biofilm research. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Leys N, Ryngaert A, Bastiaens L, Verstraete W, Top EM, Springael D (2004) Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70:1944–1955

    PubMed  CAS  Google Scholar 

  • Lipson SM, Stotzky G (1987) Interactions between viruses and clay minerals. In: Rao VC, Melnick JL (eds) Human viruses in sediments, sludges and soils. CRC, Boca Raton, FL, pp 198–229

    Google Scholar 

  • Liu Y, Zhang Q, Fang C, Zhu S, Tang Y, Huang S (2005) Effect of glutathione on UV induction of prophage lambda. Arch Microbiol 183:444–449

    PubMed  CAS  Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    PubMed  CAS  Google Scholar 

  • Ludwig W, Klenk HP (2001) In: Garrity GM et al. (eds) Overview: a phylogenetic backbone and taxonomic framework for prokaryotic systematics. Bergey’s manual of systematic bacteriology, 2nd edn, vol 1. Springer Verlag, New York, Berlin, Heidelberg, pp 49–65

    Google Scholar 

  • Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci USA 104:11197–11202

    PubMed  CAS  Google Scholar 

  • Lynch JM, Benedetti A, Insam H, Nuti MP, Smalla K, Torsvik V, Nannipieri P (2004) Microbial diversity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms. Biol Fertil Soils 40:363–385

    CAS  Google Scholar 

  • Maier RM, Pepper IL, Gerba CP (eds) (2009) Environmental microbiology, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Marsh P, Wellington EMH (1992) Interactions between acinophage and their streptomycete hosts in soil and the fate of phage-borne genes. In: Gauthier MJ (ed) Gene transfers and environment. Springer, Berlin Heidelberg New York, pp 135–142

    Google Scholar 

  • Marsh P, Wellington EMH (1994) Phage–host interactions in soil. FEMS Microbiol Ecol 15:99–107

    CAS  Google Scholar 

  • McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H et al (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann NY Acad Sci 1125:58–72

    PubMed  CAS  Google Scholar 

  • McLeod M, Aislabie J, Ryburn J, McGill A (2004) Microbial and chemical tracer movement through granular, ultic, and recent soils. New Zeal J Agr Res 47:557–563

    CAS  Google Scholar 

  • McLeod M, Aislabie J, Ryburn J, McGill A, Taylor M (2003) Microbial and chemical tracer movement through two Southland soils, New Zealand. Aust J Soil Res 41:1163–1169

    CAS  Google Scholar 

  • Miller RV (2001) Environmental bacteriophage–host interactions: factors contribution to natural transduction. Anton Leeuw Int J G 79:141–147

    CAS  Google Scholar 

  • Miller RV, Ripp S (1998) The importance of pseudolysogeny to in situ bacteriophage-host interactions. In: Syvanen M, Kado CI (eds) Horizontal gene transfer. Chapman and Hall, London, pp 78–191

    Google Scholar 

  • Moll DM, Vestal JR (1992) Survival of microorganisms in smectite clays: implications for Martian exobiology. Icarus 98:233–239

    PubMed  CAS  Google Scholar 

  • Monier J-M, Bernillon D, Kay E, Faugier A, Rybalka O, Dessaux Y, Simonet P, Vogel TM (2007) Detection of potential transgenic plant DNA recipients among soil bacteria. Environ Biosafety Res 6:71–83

    PubMed  CAS  Google Scholar 

  • Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (eds) (1995) Manual of clinical microbiology, 6th edn. ASM Press, Washington, DC

    Google Scholar 

  • Nakatsu CH (2007) Soil microbial community analysis using denaturing gradient gel electrophoresis. Soil Sci Soc Am J 71:562–571

    CAS  Google Scholar 

  • Narula N, Kothe E, Behl RK (2009) Role of root exudates in plant–microbe interactions. J Applied Botany Food Qual 82:122–130

    CAS  Google Scholar 

  • Nasser AM, Glozman R, Nitzan Y (2002) Contribution of microbial activity to virus reduction in saturated soil. Water Res 36:2589–2595

    PubMed  CAS  Google Scholar 

  • Nealson KH, Platt T, Hastings JW (1970) Cellular control of synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322

    PubMed  CAS  Google Scholar 

  • Nelson DM, Ohene-Adjei S, Hu FS, Cann IKO, Mackie RI (2007) Bacterial diversity and distribution in the holocene sediments of a northern temperate lake. Microb Ecol 54:252–263

    PubMed  CAS  Google Scholar 

  • Nemergut DR, Costello EK, Meyer AF, Pescador MY, Weintraub MN, Schmidt SK (2005) Structure and function of alpine and arctic soil microbial communities. Res Microbiol 156:775–784

    PubMed  Google Scholar 

  • Nielsen KM, Bones AM, Smalla K, van Elsas JD (1998) Horizontal gene transfer from transgenic plants to terrestrial bacteria – a rare event? FEMS Microbiol Rev 22:79–103

    PubMed  CAS  Google Scholar 

  • Nielsen KM, Townsend JP (2004) Monitoring and modeling horizontal gene transfer. Nature Biotechnol 22:1110–1114

    CAS  Google Scholar 

  • Noll M, Wellinger M (2008) Changes of the soil ecosystem along a receding glacier: testing the correlation between environmental factors and bacterial community structure. Soil Biol Biochem 40:2611–2619

    CAS  Google Scholar 

  • Normand P, Lapierre P, Tisa LS et al (2007) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15

    PubMed  Google Scholar 

  • Ogram A, Sharma K (2002) Methods of soil microbial community analysis. In: Hurst CJ (ed) Manual of environmental microbiology, 2nd edn. ASM Press, Washington, DC, pp 554–563

    Google Scholar 

  • Oren A (2004) Prokaryote diversity and taxonomy: current status and future challenges. Phil Trans R Soc Lond B 359:623–638

    CAS  Google Scholar 

  • Øvreås L, Torsvik V (1998) Microbial diversity and community structure in two different agricultural soil communities. Microb Ecol 36:303–315

    PubMed  Google Scholar 

  • Pearson A, Page SRF, Jorgenson TL, Fischer WW, Higgins MB (2007) Novel hopanoid cyclases from the environment. Environ Microbiol 9:2175–2188

    PubMed  CAS  Google Scholar 

  • Pietramellara G, Ascher J, Ceccherini MT, Nannipieri P, Wenderoth D (2007) Adsorption of pure and dirty bacterial DNA on clay minerals and their transformation frequency. Biol Fertil Soils 43:731–739

    CAS  Google Scholar 

  • Poletika NN, Jury WA, Yates MV (1995) Transport of bromide, simazine and MS-2 coliphage in a lysimeter containing undisturbed, unsaturated soil. Water Resour Res 31:801–810

    CAS  Google Scholar 

  • Pontiroli A, Rizzi A, Simonet P, Daffonchio D, Vogel TM, Monier J-M (2009) Visual evidence of horizontal gene transfer between plants and bacteria in the phytosphere of transplastomic tobacco. Appl Environ Microbiol 75:3314–3322

    PubMed  CAS  Google Scholar 

  • Prigent M, Leroy M, Confalonieri F, Dutertre M, DuBow MS (2005) A diversity of bacteriophage forms and genomes can be isolated from the surface sands of the Sahara Desert. Extremophiles 9:289–296

    PubMed  CAS  Google Scholar 

  • Quintana ET, Wierzbicka K, Mackiewicz P, Osman A, Fahal AH, Hamid ME, Zakrzewska-Czerwinska J, Maldonado LA, Goodfellow M (2008) Streptomyces sudanensis sp. nov., a new pathogen isolated from patients with actinomycetoma. Anton Leeuw Int J G 93:305–313

    CAS  Google Scholar 

  • Ravenschlag K, Sahm K, Pernthaler J, Amann R (2006) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 72:4596–4603

    Google Scholar 

  • Raya RR, Hébert EM (2009) Isolation of Phage via Induction of Lysogens. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages, (Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions), Series: Methods in Molecular Biology, Vol. 501, Sec. 1.3, 23–32

    Google Scholar 

  • Reith F, Rogers SL (2008) Assessment of bacterial communities in auriferous and non-auriferous soils using genetic and functional fingerprinting. Geomicrobiol J 25:203–215

    CAS  Google Scholar 

  • Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C et al (2004) A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303(5658):689–692

    PubMed  CAS  Google Scholar 

  • Ripp S, Jegier P, Birmele M, Johnson CM, Daumer KA, Garland JL, Sayler GS (2006) Linking bacteriophage infection to quorum sensing signaling and bioluminescent bioreporter monitoring for direct detection of bacterial agents. J App Microbiol 100:488–499

    CAS  Google Scholar 

  • Ripp S, Jegier P, Lopes N, Sayler G (2009) Phage reporter biosensing of pathogenic agents. In: Laudon M, Romanowich B (eds) Nanotech Conference & Expo 2009: An Interdisciplinary Integrative Forum on Nanotechnology, Biotechnology and Microtechnology, Vol. 2. CRC Press Boca Raton, Fla, Houston, TX, United States, 3–7 May 2009, pp 119–122

    Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    PubMed  CAS  Google Scholar 

  • Romig WR, Brodetsky AM (1961) Isolation and preliminary characterization of bacteriophages for Bacillus subtilis. J Bacteriol 82:135–141

    PubMed  CAS  Google Scholar 

  • Rosado AS, Duarte GF, Seldin L, van Elsaa JD (1998) Genetic diversity of nifh gene sequences in Paenibacillus azotofixans strains and soil samples analyzed by denaturing gradient gel electrophoresis of PCR amplified gene fragments. Appl Environ Microbiol 64:2770–2779

    PubMed  CAS  Google Scholar 

  • Roslycky EB (1982) Influence of selected herbicides in phages of some soil bacteria. Can J Soil Sci 62:217–220

    CAS  Google Scholar 

  • Rudrappa T, Biedrzycki ML, Bais HP (2008) Causes and consequences of plant-associated biofilms. FEMS Microbiol Ecol 64:153–166

    PubMed  CAS  Google Scholar 

  • Ryan JN, Harvey RW, Metge D, Elimelech M, Navigato T, Pieper AP (2002) Field and laboratory investigations of inactivation of viruses (PRD1 and MS2) attached to iron oxide-coated quartz sand. Environ Sci Technol 36:2403–2413

    PubMed  CAS  Google Scholar 

  • Salles JF, van Veen JA, van Elsas JD (2004) Multivariate analyses of Burkholderia species in soil: effect of crop and land use history. Appl Environ Microbiol 70:4012–4020

    PubMed  CAS  Google Scholar 

  • Sandaa R-A, Torsvik V, Enger Ø (2001) Influence of long-term heavy-metal contamination on microbial communities in soil. Soil Biol Biochem 33:287–295

    CAS  Google Scholar 

  • Santos F, Meyerdierks A, Peña A, Rosselló-Mora R, Amann R, Antón J (2007) Metagenomic approach to the study of halophages: the environmental halophage1. Environ Microbiol 9:1711–1723

    PubMed  CAS  Google Scholar 

  • Schijven JF, Hassanizadeh SM (2000) Removal of viruses by soil passage: overview of modeling, processes, and parameters. Crit Rev Env Sci Tec 30:49–127

    CAS  Google Scholar 

  • Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. PLoS Comput Biol 2:786–793

    CAS  Google Scholar 

  • Scholten JC, Culley DE, Brockman FJ, Wu G, Weiwen Z (2007) Evolution of the syntrophic interaction between Desulfovibrio vulgaris and Methanosarcina barkeri: involvement of an ancient horizontal gene transfer. Biochem Biophys Res Commun 352:48–54

    PubMed  CAS  Google Scholar 

  • Schuch R, Fischetti VA (2009) The secret life of the Anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations. PLoS ONE 4:e6532. doi:10.1371/journal.pone.0006532

    PubMed  Google Scholar 

  • Schulze-Makuch D, Guan H, Pillai SD (2003) Effects of pH and geological medium on bacteriophage MS2 transport in a model aquifer. Geomicrobiol J 20:73–84

    CAS  Google Scholar 

  • Seeley ND, Primrose SB (1980) The effect of temperature on the ecology of aquatic bacteriophages. J Gen Virol 46:87–95

    Google Scholar 

  • Seghers D, Bulcke R, Reheul D, Siciliano SD, Top EM, Verstraete W (2003) Pollution induced community tolerance (PICT) and analysis of 16S rRNA genes to evaluate the long-term effects of herbicides on methanotrophic communities in soil. Eur J Soil Sci 54:679–684

    CAS  Google Scholar 

  • Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E (2001) Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol 67:4215–4224

    PubMed  CAS  Google Scholar 

  • Sinton LW, Finlay RK, Pang L, Scott DM (1997) Transport of bacteria and bacteriophages in irrigated effluent into and through an alluvial gravel aquifer. Water Air Soil Pollut 98:17–42

    CAS  Google Scholar 

  • Sobczak WV, Lars O, Hedin LO, Klug MJ (1998) Relationships between bacterial productivity and organic carbon at a soil–stream interface. Hydrobiol 386:45–53

    CAS  Google Scholar 

  • Solomon EB, Yaron S, Matthews KR (2002) Transmission of Escherichia coli O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization. Appl Environ Microbiol 68:397–400

    PubMed  CAS  Google Scholar 

  • Stackebrandt E, Liesack W, Goebel BM (1993) Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB J 7:232–236

    PubMed  CAS  Google Scholar 

  • Steinberger Y, Zelles L, Bai QY, von Lützow M, Munch JC (1999) Phospholipid fatty acid profiles as indicators for the microbial community structure in soils along a climatic transect in the Judean Desert. Biol Fertil Soils 28:292–300

    CAS  Google Scholar 

  • Stewart FM, Levin BR (1984) The population biology of bacterial viruses – why be temperate. Theor Popul Biol 26:93–117

    PubMed  CAS  Google Scholar 

  • Stotzky G (1989) Gene transfer among bacteria in soil. In: Levy SB, Miller RV (eds) Gene transfer in the environment. McGraw-Hill, New York, pp 165–222

    Google Scholar 

  • Su J, Wu Y, Ma X, Zhang G, Feng H, Zhang Y (2004) Soil microbial counts and identification of culturable bacteria in an extreme by arid zone. Folia Microbiol 49:423–429

    CAS  Google Scholar 

  • Sugiyama S, Zabed HM, Okubo A (2008) Relationships between soil microbial diversity and plant community structure in seminatural grasslands. Grassland Sci 54:117–124

    CAS  Google Scholar 

  • Sumner ME (ed) (2000) Handbook of soil science. CRC Press, Boca Raton

    Google Scholar 

  • Szponar B, Mordarska H (1997) Rhodococcus equi – human and animal opportunistic pathogen. Postepy Mikrobiologii 36:353–368

    CAS  Google Scholar 

  • Tarlera S, Jangid K, Ivester HA, Whitman WB, Williams MA (2008) Microbial community succession and bacterial diversity in soils during 77,000 years of ecosystem development. FEMS Microbiol Ecol 64:129–140

    PubMed  CAS  Google Scholar 

  • Taylor JP, Wilson B, Mills MS, Burns RG (2002) Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol Biochem 34:387–401

    CAS  Google Scholar 

  • Teske A, Wawer C, Muyzer G, Ramsing NB (1996) Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl Environ Microbiol 62:1405–1415

    PubMed  CAS  Google Scholar 

  • Thompson SS, Yates MV (1999) Bacteriophages inactivation at the air–water–solid interface in dynamic batch systems. Appl Environ Microbiol 65:1186–1190

    PubMed  CAS  Google Scholar 

  • Throback IN, Enwall K, Jarvis A, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417

    PubMed  CAS  Google Scholar 

  • Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    PubMed  CAS  Google Scholar 

  • Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    PubMed  CAS  Google Scholar 

  • Toure IM, Stenz E (1977) The effect of selected herbicides on bacteriophages and Escherichia coli. Zentr Bakter Paras Infekt Hygiene 2:163–177

    Google Scholar 

  • Twort FW (1915) An investigation on the nature of ultra-microscopic viruses. Lancet 186:1241–1243

    Google Scholar 

  • USEPA, Untied States Environmental Protection Agency (2002) Biosolids applied to land: advancing standards and practices. http://www.epa.gov/waterscience/biosolids/nas/complete.pdf

  • Vaeck M, Reynaerts A, Hofte H, Jansens S, De Beuckeleer M, Dean C, Zabeau M, Van Montagu M, Leemans J (1987) Transgenic plants protected from insect attack. Nature 328:33–37

    CAS  Google Scholar 

  • van der Wielen PWJJ, Senden WJMK, Medema G (2008) Removal of bacteriophages MS2 and fX174 during transport in a sandy anoxic aquifer. Environ Sci Technol 42:4589–4594

    PubMed  Google Scholar 

  • Van Elsas JD, Tam L, Finlay RD, Kilham K, Trevors JT (2007) Microbial interactions in soil. In: Van Elsas JD, Jansson JK, Trevors JT (eds) Modern soil ecology. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp 1177–210

    Google Scholar 

  • van Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, McGeoch DJ, Pringle CR, Wickner RB (eds) (2000) Virus Taxonomy, Seventh Report of the International Committee on Taxonomy of Viruses, Academic Press, San Diego, pp 63–136, 267–284, 389–393, 645–650

    Google Scholar 

  • Vanbroekhoven K, Ryngaert A, Wattiau P, De Mot R, Springael D (2004) Acinetobacter diversity in environmental samples assessed by 16S rRNA gene PCR-DGGE fingerprinting. FEMS Microbiol Ecol 50:37–50

    PubMed  CAS  Google Scholar 

  • Vaneechoutte M, Dijkshoorn L, Tjernberg I, Elaichouni A, De vos P et al (1995) Identification of acinetobacter genomic species by amplified ribosomal DNA restriction analysis. J Clin Microbiol 33:11–15

    PubMed  CAS  Google Scholar 

  • Vos M, Birkett PJ, Birch E, Griffiths RI, Buckling A (2009) Local adaptation of bacteriophages to their bacterial hosts in soil. Science 325:833

    PubMed  CAS  Google Scholar 

  • Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484

    PubMed  Google Scholar 

  • Wang I-N (2006) Lysis timing and bacteriophage fitness. Genetics 172:17–26

    PubMed  CAS  Google Scholar 

  • Wang J, Wu Y, Jiang H, Li C, Dong H, Wu Q, Soininen J, Shen J (2008) High beta diversity of bacteria in the shallow terrestrial subsurface. Environ Microbiol 10:2537–2549

    PubMed  CAS  Google Scholar 

  • Wawer C, Muyzer G (1995) Genetic diversity of Desulfovibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments. Appl Environ Microbiol 61:2203–2210

    PubMed  CAS  Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    PubMed  CAS  Google Scholar 

  • Weinbauer MG, Suttle CA (1996) Potential significance of lysogeny to bacteriophage production and bacterial mortality in coastal waters of the Gulf of Mexico. Appl Environ Microbiol 62:4374–4380

    PubMed  CAS  Google Scholar 

  • Williamson KE, Radosevich M, Wommack KE (2005) Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol 71:3119–3125

    PubMed  CAS  Google Scholar 

  • Williamson KE, Schnitker JB, Radosevich M, Smith DW, Wommack KE (2008) Cultivation-based assessment of lysogeny among soil bacteria. Microb Ecol 56:437–447

    PubMed  Google Scholar 

  • Wise MG, McArthur JV, Shimkets LJ (1999) Methanotroph diversity in landfill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis. Appl Environ Microbiol 65:4887–4897

    PubMed  CAS  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    PubMed  CAS  Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    PubMed  CAS  Google Scholar 

  • Zeph LR, Onaga MA, Stotzky G (1988) Transduction of Escherichia coli by bacteriophage P1 in soil. Appl Environ Microbiol 54:1731–1737

    PubMed  CAS  Google Scholar 

  • Zhou J, Davey ME, Figueras JB, Rivkina E, Gilichinsky D, Tiedje JM (1997) Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiol 143:3913–3919

    CAS  Google Scholar 

  • Zhuang J, Jin Y (2003) Virus retention and transport as influenced by different forms of soil organic matter. J Environ Qual 32:816–823

    PubMed  CAS  Google Scholar 

  • Zinder ND, Lederberg J (1952) Genetic exchange in Salmonella. J Bacteriol 64:679–699

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The author would like to thank Prof. Em. H-W Ackermann for his inspiration, knowledge, and life time dedication to phages consequently “infecting” other scientists with his élan. The author would like also to thank Ms. Miri Offer for her support in bibliographic searches during the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Armon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Armon, R. (2011). Soil Bacteria and Bacteriophages. In: Witzany, G. (eds) Biocommunication in Soil Microorganisms. Soil Biology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14512-4_3

Download citation

Publish with us

Policies and ethics