Skip to main content

Communication Among Phages, Bacteria, and Soil Environments

  • Chapter
  • First Online:
Biocommunication in Soil Microorganisms

Part of the book series: Soil Biology ((SOILBIOL,volume 23))

Abstract

Organisms have three basic functions: survival, reproduction, and movement. Survival is necessary for reproduction, reproduction increases numbers, and movement at a minimum assures that all of an organism’s “eggs” are not found in the same spatial “basket.” For bacteriophages (phages), these facets can be differentiated into mechanisms that operate within the context of bacterial hosts vs. less so. Survival hence can occur in the infection or virion state; reproduction can be differentiated into that which is more closely linked with normal bacterial metabolism (i.e., prophage replication) vs. that which involves substantial modification of normal bacterial metabolism (i.e., lytic reproduction); and movement can occur as virions or while infecting bacteria. We thus can envisage a dance between phages and bacteria involving survival, reproduction, and movement. During this time, exchange of information can occur, that is, communication. In this chapter, I explore such communication within the context of soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon ST (1990) Selection for lysis inhibition in bacteriophage. J Theor Biol 146:501–511

    PubMed  CAS  Google Scholar 

  • Abedon ST (1994) Lysis and the interaction between free phages and infected cells. In: Karam JD (ed) The molecular biology of bacteriophage T4. ASM Press, Washington, DC, pp 397–405

    Google Scholar 

  • Abedon ST (2008) Phages, ecology, evolution. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, UK, pp 1–28

    Google Scholar 

  • Abedon ST (2009a) Bacteriophage evolution and ecology. Adv Appl Microbiol 67:1–45

    PubMed  CAS  Google Scholar 

  • Abedon ST (2009b) Disambiguating bacteriophage pseudolysogeny: an historical analysis of lysogeny, pseudolysogeny, and the phage carrier state. In: Adams HT (ed) Contemporary trends in bacteriophage research. Nova Science Publishers, New York

    Google Scholar 

  • Abedon ST (2009c) Impact of phage properties on bacterial survival. In: Adams HT (ed) Contemporary trends in bacteriophage research. Nova Science Publishers, New York

    Google Scholar 

  • Abedon ST (2009d) Kinetics of phage-mediated biocontrol of bacteria. Foodborne Pathog Dis 6(7):807–815

    PubMed  Google Scholar 

  • Abedon ST (2010) Bacteriophages and Biofilms. In: Bailey WC (ed) Biofilms: Formation, Development and Properties. Nova Science Publishers, New York

    Google Scholar 

  • Abedon ST, LeJeune JT (2005) Why bacteriophage encode exotoxins and other virulence factors. Evol Bioinf Online 1:97–110

    CAS  Google Scholar 

  • Abedon ST, Thomas-Abedon C (2010) Phage therapy pharmacology. Curr Pharm Biotechnol 11:28–47

    PubMed  CAS  Google Scholar 

  • Abedon ST, Yin J (2008) Impact of spatial structure on phage population growth. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, UK, pp 94–113

    Google Scholar 

  • Abedon ST, Yin J (2009) Bacteriophage plaques: theory and analysis. Methods Mol Biol 501:161–174

    PubMed  CAS  Google Scholar 

  • Abedon ST, Duffy S, Turner PE (2009) Bacteriophage ecology. In: Schaecter M (ed) Encyclopedia of microbiology. Elsevier, Oxford, pp 42–57

    Google Scholar 

  • Appunu C, Dhar B (2008) Isolation and symbiotic characteristics of two Tn5-derived phage-resistant Bradyrhizobium japonicum strains that nodulate soybean. Curr Microbiol 57:212–217

    PubMed  CAS  Google Scholar 

  • Ashelford KE, Day MJ, Bailey MJ, Lilley AK, Fry JC (1999) In situ population dynamics of bacterial viruses in a terrestrial environment. Appl Environ Microbiol 65:169–174

    PubMed  CAS  Google Scholar 

  • Ashelford KE, Norris SJ, Fry JC, Bailey MJ, Day MJ (2000) Seasonal population dynamics and interactions of competing bacteriophages and their host in the rhizosphere. Appl Environ Microbiol 66:4193–4199

    PubMed  CAS  Google Scholar 

  • Ashelford KE, Day MJ, Fry JC (2003) Elevated abundance of bacteriophage infecting bacteria in soil. Appl Environ Microbiol 69:285–289

    PubMed  CAS  Google Scholar 

  • Azeredo J, Sutherland IW (2008) The use of phages for the removal of infectious biofilms. Curr Pharm Biotechnol 9:261–266

    PubMed  CAS  Google Scholar 

  • Azuaga MJ, Munoz J, Gonzalez F, Arias JM (1990) Isolation and characterization of bacteriophages from Myxococcus virescens. Microbios 61:83–88

    Google Scholar 

  • Bales RC, Li S, Maguire KM, Yahya MT, Gerba CP, Harvey RW (1995) Virus and bacteria transport in a sandy aquifer, Cape Cod, MA. Ground Water 33:653–661

    CAS  Google Scholar 

  • Barnet YM, Humphrey B (1975) Exopolysaccharide depolymerases induced by Rhizobium bacteriophages. Can J Microbiol 21:1647–1650

    PubMed  CAS  Google Scholar 

  • Bell G (1992) Five properties of environments. In: Grant PR, Horn HS (eds) Molds, molecules and metazoa: growing points in evolutionary biology. Princeton University Press, Princeton, pp 33–54

    Google Scholar 

  • Berleman JE, Chumley T, Cheung P, Kirby JR (2006) Rippling is a predatory behavior in Myxococcus xanthus. J Bacteriol 188:5888–5895

    PubMed  CAS  Google Scholar 

  • Bettarel Y, Sime-Ngando T, Amblard C, Bouvy M (2005) Low consumption of virus-sized particles by heterotrophic nanoflagellates in two lakes of the French Massif central. Aquat Microb Ecol 39:205–209

    Google Scholar 

  • Bixby RL, O’Brien DJ (1979) Influence of fulvic acid on bacteriophage adsorption and complexation in soil. Appl Environ Microbiol 38:840–845

    PubMed  CAS  Google Scholar 

  • Blanc R, Nasser A (1996) Effect of effluent quality and temperature on the persistence of viruses in soil. Water Sci Technol 33:237–242

    CAS  Google Scholar 

  • Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Ann Rev Microbiol 63:363–383

    CAS  Google Scholar 

  • Brockhurst MA, Morgan AD, Fenton A, Buckling A (2007) Experimental coevolution with bacteria and phage. The Pseudomonas fluorescens – Φ2 model system. Infect Genet Evol 7:547–552

    PubMed  CAS  Google Scholar 

  • Brooks JP, Tanner BD, Josephson KL, Gerba CP, Pepper IL (2004) Bioaerosols from the land application of biosolids in the desert southwest USA. Water Sci Technol 50:7–12

    PubMed  CAS  Google Scholar 

  • Brown EW, LeClerc JE, Kotewicz ML, Cebula TA (2001) Three R’s of bacterial evolution: how replication, repair, and recombination frame the origin of species. Environ Mol Mutagen 38:248–260

    PubMed  CAS  Google Scholar 

  • Brown SP, Le Chat L, De Paepe M, Taddei F (2006) Ecology of microbial invasions: amplification allows virus carriers to invade more rapidly when rare. Curr Biol 16:2048–2052

    PubMed  CAS  Google Scholar 

  • Burmølle M, Hansen LH, Sørensen SJ (2007) Establishment and early succession of a multispecies biofilm composed of soil bacteria. Microb Ecol 54:352–362

    PubMed  Google Scholar 

  • Burroughs NJ, Marsh P, Wellington EMH (2000) Mathematical analysis of growth and interaction dynamics of streptomycetes and a bacteriophage in soil. Appl Environ Microbiol 66:3868–3877

    PubMed  CAS  Google Scholar 

  • Campbell A (1994) Comparative molecular biology of lambdoid phages. Ann Rev Microbiol 48:193–222

    CAS  Google Scholar 

  • Campbell AM (2006) General aspects of lysogeny. In: Calendar R, Abedon ST (eds) The bacteriophages. Oxford University Press, Oxford, pp 66–73

    Google Scholar 

  • Campbell JIA, Albrechtsen M, Sorensen J (1995) Large Pseudomonas phages isolated from barley rhizosphere. FEMS Microbiol Ecol 18:63–74

    CAS  Google Scholar 

  • Carlson K (2005) Working with bacteriophages: common techniques and methodological approaches. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and application. CRC Press, Boca Raton, Florida, pp 437–494

    Google Scholar 

  • Casas V, Miyake J, Balsley H, Roark J, Telles S, Leeds S, Zurita I, Breitbart M, Bartlett D, Azam F, Rohwer F (2006) Widespread occurrence of phage-encoded exotoxin genes in terrestrial and aquatic environments in Southern California. FEMS Microbiol Lett 261:141–149

    PubMed  CAS  Google Scholar 

  • Casas V, Rohwer F (2007) Phage metagenomics. Meth Enzymol 421:259–268

    PubMed  CAS  Google Scholar 

  • Chattopadhyay D, Puls RW (2000) Forces dictating colloidal interactions between viruses and soil. Chemosphere 41:1279–1286

    PubMed  CAS  Google Scholar 

  • Chen Y, Golding I, Sawai S, Guo L, Cox EC (2005) Population fitness and the regulation of Escherichia coli genes by bacterial viruses. PLoS Biol 3:e229

    PubMed  Google Scholar 

  • Choi C, Song I, Stine S, Pimentel J, Gerba C (2004) Role of irrigation and wastewater reuse: comparison of subsurface irrigation and furrow irrigation. Water Sci Technol 50:61–68

    PubMed  CAS  Google Scholar 

  • Clark JM (2005) Microbe-laden aerosols. Microbiol Today Nov:172–173

    Google Scholar 

  • Coberly LC, Wei W, Sampson K, Millstein J, Wichman H, Krone SM (2009) Spatial structure and host evolution facilitate coexistence of competing bacteriophages: theory and experiment. Am Nat 173:E121–E138

    PubMed  Google Scholar 

  • Cohan FM, Roberts MS, King EC (1991) The potential for genetic exchange by transformation within a natural-population of Bacillus subtilis. Evolution 45:1393–1421

    Google Scholar 

  • Colegrave N (2002) Sex releases the speed limit on evolution. Nature 420:664–666

    PubMed  CAS  Google Scholar 

  • Davies CM, Logan MR, Rothwell VJ, Krogh M, Ferguson CM, Charles K, Deere DA, Ashbolt NJ (2006) Soil inactivation of DNA viruses in septic seepage. J Appl Microbiol 100:365–374

    PubMed  CAS  Google Scholar 

  • Davis JA, Farrah SR, Wilkie AC (2006) Adsorption of viruses to soil: impact of anaerobic treatment. Water Sci Technol 54:161–167

    PubMed  CAS  Google Scholar 

  • Day MJ, Miller RV (2008) Phage ecology of terrestrial environments. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, UK, pp 281–301

    Google Scholar 

  • Day MJ (2004) Transformation. In: Miller RV, Day MJ (eds) Microbial evolution: gene establishment, survival, and exchange. ASM Press, Washington DC, pp 158–172

    Google Scholar 

  • Dennehy JJ, Friedenberg NA, Yang YW, Turner PE (2006) Bacteriophage migration via nematode vectors: host-parasite-consumer interactions in laboratory microcosms. Appl Environ Microbiol 72:1974–1979

    PubMed  CAS  Google Scholar 

  • Doolittle WF (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311

    PubMed  CAS  Google Scholar 

  • Drake JW, Ripley LS (1994) Induced mutagenesis and isolation of T4 mutants. In: Karam JD (ed) Molecular biology of bacteriophage T4. ASM Press, Washington, pp 447–451

    Google Scholar 

  • Duboise SM, Moore BE, Sorber CA, Sagik BP (1979) Viruses in soil systems. In: Isenberg HD (ed) CRC critical reviews in microbiology. CRC Press, Boca Raton, FL, pp 245–285

    Google Scholar 

  • Duffy S, Turner PE (2008) Introduction to phage evolutionary biology. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, UK, pp 147–176

    Google Scholar 

  • Duffy S, Turner PE, Burch CL (2006) Pleiotropic costs of niche expansion in the RNA bacteriophage Phi6. Genetics 172:751–757

    PubMed  CAS  Google Scholar 

  • Errington J (2003) Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1:117–126

    PubMed  CAS  Google Scholar 

  • Evans KJ, Hobley L, Lambert C, Sockett RE (2007) Bdellovibrio: lone hunter “cousin” of the “pack hunting” myxobacteria. In: Whitworth DE (ed) Myxobacteria: multicellularity and differentiation. ASM Press, Washington, DC, pp 351–362

    Google Scholar 

  • Ferguson CM, Davies CM, Kaucner C, Krogh M, Rodehutskors J, Deere DA, Ashbolt NJ (2007) Field scale quantification of microbial transport from bovine faeces under simulated rainfall events. J Water Health 5:83–95

    PubMed  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631

    PubMed  CAS  Google Scholar 

  • Fink PS, Zahler SA (2006) Temperate bacteriophages of Bacillus subtilis. In: Calendar R, Abedon ST (eds) The bacteriophages. Oxford University Press, Oxford, pp 557–571

    Google Scholar 

  • Forde SE, Thompson JN, Bohannan BJM (2004) Adaptation varies through space and time in a coevolving host–parasitoid interaction. Nature 431:841–844

    PubMed  CAS  Google Scholar 

  • Frostegård A, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P, Nesme X, Simonet P (1999) Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol 65:5409–5420

    PubMed  Google Scholar 

  • Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548

    PubMed  CAS  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soils. Science 309:1387–1390

    PubMed  CAS  Google Scholar 

  • Germida JJ (1986) Population dynamics of Azospirillum brasilense and its bacteriophage in soil. Plant Soil 90:117–128

    Google Scholar 

  • Ghosh D, Roy K, Williamson KE, White DC, Wommack KE, Sublette KL, Radosevich M (2008) Prevalence of lysogeny among soil bacteria and presence of 16S rRNA and trzN genes in viral-community DNA. Appl Environ Microbiol 74:495–502

    PubMed  CAS  Google Scholar 

  • Gill JJ, Abedon ST (2003) Bacteriophage ecology and plants. APSnet Feature. http://www.apsnet.org/online/feature/phages/

  • Gomez LA, Laubach SE (2006) Rapid digital quantification of microfracture populations. J Struct Geol 28:408–420

    Google Scholar 

  • González JM, Suttle CA (1993) Grazing by marine nanoflagellates on viruses and virus-sized particles: ingestion and digestion. Mar Ecol Prog Ser 94:1–10

    Google Scholar 

  • Hadas H, Einav M, Fishov I, Zaritsky A (1997) Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology 143:179–185

    PubMed  CAS  Google Scholar 

  • Hagens S, Habel A, Blasi U (2006) Augmentation of the antimicrobial efficacy of antibiotics by filamentous phage. Microb Drug Resist 12:164–168

    PubMed  CAS  Google Scholar 

  • Hassen A, Jamoussi F, Saidi N, Mabrouki Z, Fakhfakh E (2003) Microbial and copper adsorption by smectitic clay – an experimental study. Environ Technol 24:1117–1127

    PubMed  CAS  Google Scholar 

  • Heineman RH, Springman R, Bull JJ (2008) Optimal foraging by bacteriophages through host avoidance. Am Nat 171:E150–E157

    Google Scholar 

  • Hendrix RW (2008) Phage evolution. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, UK, pp 177–194

    Google Scholar 

  • Hendrix RW, Lawrence JG, Hatfull GF, Casjens S (2000) The origins and ongoing evolution of viruses. Trends Microbiol 8:504–508

    PubMed  CAS  Google Scholar 

  • Hoskisson PA, Smith MCM (2007) Hypervariation and phase variation in the bacteriophage ‘resistome’. Curr Opin Microbiol 10:396–400

    PubMed  CAS  Google Scholar 

  • Hussein ME, El-Hawa MEA, El Dydamony G (1994) Population and persistence of Zag-1 phage and cowpea Rhizobium in two sterile soils. Egypt J Microbiol 29:271–283

    Google Scholar 

  • Hyman P, Abedon ST (2008) Phage ecology of bacterial pathogenesis. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, UK, pp 353–385

    Google Scholar 

  • Hyman P, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 70:217–248

    PubMed  CAS  Google Scholar 

  • Ito S-I, Nishimune T, Abe M, Kimoto M, Hayashi R (1986) Bacteriocinlike killing action of a temperate bacteriophage φBA1 of Bacillus aneurinolyticus. J Virol 59:103–111

    PubMed  CAS  Google Scholar 

  • Jia Z, Ishihara R, Nakajima Y, Asakawa S, Kimura M (2007) Molecular characterization of T4-type bacteriophages in a rice field. Environ Microbiol 9:1091–1096

    PubMed  CAS  Google Scholar 

  • Johnson LJ, Koufopanou V, Goddard MR, Hetherington R, Schafer SM, Burt A (2004) Population genetics of the wild yeast Saccharomyces paradoxus. Genetics 166:43–52

    PubMed  CAS  Google Scholar 

  • Karlovsky P (2008) Secondary metabolites in soil ecology. In: Karlovsky P (ed) Secondary metabolites in soil ecology. Springer, Berlin, pp 1–19

    Google Scholar 

  • Keel C, Ucurum Z, Michaux P, Adrian M, Haas D (2002) Deleterious impact of a virulent bacteriophage on survival and biocontrol activity of Pseudomonas fluorescens strain CHAO in natural soil. Mol Plant Microbe Interact 15:567–576

    PubMed  CAS  Google Scholar 

  • Kerr B, West J, Bohannan BJM (2008) Bacteriophage: models for exploring basic principles of ecology. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, UK, pp 31–63

    Google Scholar 

  • Korona R, Levin BR (1993) Phage-mediated selection and the evolution and maintenance of restriction-modification. Evolution 47:556–575

    Google Scholar 

  • Krisch HM (2003) The view from Les Treilles on the origins, evolution and diversity of viruses. Res Microbiol 154:227–229

    PubMed  Google Scholar 

  • Krone SM, Abedon ST (2008) Modeling phage plaque growth. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, UK, pp 415–438

    Google Scholar 

  • Kutter E, Kellenberger E, Carlson K, Eddy S, Neitzel J, Messinger L, North J, Guttman B (1994) Effects of bacterial growth conditions and physiology on T4 infection. In: Karam JD (ed) The molecular biology of bacteriophage T4. ASM Press, Washington, DC, pp 406–418

    Google Scholar 

  • Lawrence JG, Hendrix RW, Casjens S (2001) Where are the pseudogenes in bacterial genomes? Trends Microbiol 9:535–540

    PubMed  CAS  Google Scholar 

  • Lawrence JG, Ochman H (1997) Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44:383–397

    PubMed  CAS  Google Scholar 

  • McKay LD, Harton AD, Wilson GV (2002) Influence of flow rate on transport of bacteriophage in shale saprolite. J Environ Qual 31:1095–1105

    PubMed  CAS  Google Scholar 

  • McLeod M, Aislabie J, Smith J, Fraser R, Roberts A, Taylor M (2001) Viral and chemical tracer movement through contrasting soils. J Environ Qual 30:2134–2140

    PubMed  CAS  Google Scholar 

  • Miller RV, Day M (2008) Contribution of lysogeny, pseudolysogeny, and starvation to phage ecology. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, UK, pp 114–143

    Google Scholar 

  • Nasser AM, Glozman R, Nitzan Y (2002) Contribution of microbial activity to virus reduction in saturated soil. Water Res 36:2589–2595

    PubMed  CAS  Google Scholar 

  • O’Donnell AG, Young IM, Rushton SP, Shirley MD, Crawford JW (2007) Visualization, modelling and prediction in soil microbiology. Nat Rev Microbiol 5:689–699

    PubMed  Google Scholar 

  • Pantastica-Caldas M, Duncan KE, Istock CA, Bell JA (1992) Population dynamics of bacteriophage and Bacillus subtilis in soil. Ecology 73:1888–1902

    Google Scholar 

  • Paolozzi L, Ghelardini P (2006) The bacteriophage Mu. In: Calendar R, Abedon ST (eds) The bacteriophages. Oxford University Press, Oxford, pp 469–496

    Google Scholar 

  • Paul JH (2008) Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J 2(6):579–589

    PubMed  CAS  Google Scholar 

  • Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C, Lewis JA, Jacobs-Sera D, Falbo J, Gross J, Pannunzio NR, Brucker W, Kumar V, Kandasamy J, Keenan L, Bardarov S Jr, Kriakov J, Lawrence JG, Jacobs WR Jr, Hendrix RW, Hatfull GF (2003) Origins of highly mosaic mycobacteriophage genomes. Cell 113:171–182

    PubMed  CAS  Google Scholar 

  • Pietramellara G, Ascher J, Borgogni F, Ceccherini MT, Guerri G, Nannipieri P (2009) Extracellular DNA in soil and sediment: fate and ecological relevance. Biol Fertil Soils 45:219–235

    CAS  Google Scholar 

  • Prigent M, Leroy M, Confalonieri F, Dutertre M, DuBow MS (2005) A diversity of bacteriophage forms and genomes can be isolated from the surface sands of the Sahara Desert. Extremophiles 9:289–296

    PubMed  CAS  Google Scholar 

  • Ranjard L, Richaume AS (2001) Quantitative and qualitative microscale distribution of bacteria in soil. Res Microbiol 152:707–716

    PubMed  CAS  Google Scholar 

  • Reanney DC, Marsh SCN (1973) The ecology of viruses attacking Bacillus stearothermophilus in soil. Soil Biol Biochem 5:399–408

    Google Scholar 

  • Rice SA, Tan CH, Mikkelsen PJ, Kung V, Woo J, Tay M, Hauser A, McDougald D, Webb JS, Kjelleberg S (2009) The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J 3:271–282

    PubMed  CAS  Google Scholar 

  • Silver-Mysliwiec T, Bramucci MG (1990) Bacteriophage-enhanced sporulation: comparison of the spore converting bacteriophages PMB12 and SP10. J Bacteriol 172:1948–1953

    PubMed  CAS  Google Scholar 

  • Sonenshein AL (2006) Bacteriophages: how bacterial spores capture and protect phage DNA. Curr Biol 16:R14–R16

    PubMed  CAS  Google Scholar 

  • Song I, Choi CY, O’Shaughnessy S, Gerba CP (2005) Effects of temperature and moisture on coliphage PRD-1 survival in soil. J Food Prot 68:2118–2122

    PubMed  Google Scholar 

  • Stewart FM, Levin BR (1984) The population biology of bacterial viruses: why be temperate. Theor Pop Biol 26:93–117

    CAS  Google Scholar 

  • Sumby P, Smith MCM (2002) Genetics of the phage growth limitation (Pgl) system of Streptomyces coelicolor A3(2). Mol Microbiol 44:489–500

    PubMed  CAS  Google Scholar 

  • Sutherland IW, Hughes KA, Skillman LC, Tait K (2004) The interaction of phage and biofilms. FEMS Microbiol Lett 232:1–6

    PubMed  CAS  Google Scholar 

  • Suttle CA (2007) Marine viruses – major players in the global ecosystem. Nat Rev Microbiol 5:801–812

    PubMed  CAS  Google Scholar 

  • Tan JSH, Reanney DC (1976) Interactions between bacteriophages and bacteria in soil. Soil Biol Biochem 8:145–150

    Google Scholar 

  • Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45:1320–1328

    Google Scholar 

  • Thingstad TF, Bratbak G, Heldal M (2008) Aquatic phage ecology. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, UK, pp 251–280

    Google Scholar 

  • Turner PE, Duffy S (2008) Evolutionary ecology of multi-phage infections. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, UK, pp 195–216

    Google Scholar 

  • Van Cuyk S, Siegrist RL (2007) Virus removal within a soil infiltration zone as affected by effluent composition, application rate, and soil type. Water Res 41:699–709

    PubMed  Google Scholar 

  • Vettori C, Gallori E, Stotzy G (2000) Clay minerals protect bacteriophage PBS1 of Bacillus subtilis against inactivation and loss of transducing ability by UV radiation. Can J Microbiol 46:770–773

    PubMed  CAS  Google Scholar 

  • Vogel TM, Simonet P, Jansson JK, Hirsch PR, Tiedje JM, van Elsas JD, Bailey MJ, Nalin R, Philippot L (2009) TerraGenome: a consortium for the sequencing of a soil metagenome. Nat Rev Microbiol 7:252

    CAS  Google Scholar 

  • Vos M, Birkett PJ, Birch E, Griffiths R, Robert I, Buckling A (2009) Local adaptation of bacteriophages to their bacterial hosts in soil. Science 325:833

    PubMed  CAS  Google Scholar 

  • Watanabe K, Hayano K (1994) Estimate of the source of proteases in upland fields. Biol Fertil Soils 18:341–346

    CAS  Google Scholar 

  • Webb V, Leduc E, Spiegelman GB (1982) Burst size of bacteriophage SP82 as a function of growth rate of its host Bacillus subtilis. Can J Microbiol 28:1277–1280

    PubMed  CAS  Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    PubMed  CAS  Google Scholar 

  • Weinbauer MG, Agis M, Bonilla-Findji O, Malits A, Winter C (2007) Bacteriophage in the environment. In: McGrath S, van Sinderen D (eds) Bacteriophage: genetics and molecular biology. Caister Academic Press, Norfolk, UK, pp 61–92

    Google Scholar 

  • Weitz JS, Mileyko Y, Joh RI, Voit EO (2008) Collective decision making in bacterial viruses. Biophys J 95:2673–2680

    PubMed  CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    PubMed  CAS  Google Scholar 

  • Williams ST, Lanning S (1984) Studies of the ecology of streptomycete phage in soil. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff V (eds) Biological, biochemical and biomedical aspects of actinomycetes. Academic Press, London, pp 473–483

    Google Scholar 

  • Williams ST, Mortimer AM, Manchester L (1987) Ecology of soil bacteriophages. In: Goyal SM, Gerba CP, Bitton G (eds) Phage ecology. John Wiley & Sons, New York, pp 157–179

    Google Scholar 

  • Williamson KE, Wommack KE, Radosevich M (2003) Sampling natural viral communities from soil for culture-independent analyses. Appl Environ Microbiol 69:6628–6633

    PubMed  CAS  Google Scholar 

  • Williamson KE, Radosevich M, Wommack KE (2005) Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol 71:3119–3125

    PubMed  CAS  Google Scholar 

  • Williamson KE, Radosevich M, Smith DW, Wommack KE (2007) Incidence of lysogeny within temperate and extreme soil environments. Environ Microbiol 9:2563–2574

    PubMed  CAS  Google Scholar 

  • Williamson KE, Schnitker JB, Radosevich M, Smith DW, Wommack KE (2008) Cultivation-based assessment of lysogeny among soil bacteria. Microb Ecol 56:437–447

    PubMed  Google Scholar 

  • Wong TP, Byappanahalli M, Yoneyama B, Ray C (2008) An evaluation of the mobility of pathogen indicators, Escherichia coli and bacteriophage MS-2, in a highly weathered tropical soil under unsaturated conditions. J Water Health 6:131–140

    PubMed  CAS  Google Scholar 

  • Yin J, McCaskill JS (1992) Replication of viruses in a growing plaque: a reaction-diffusion model. Biophys J 61:1540–1549

    PubMed  CAS  Google Scholar 

  • Zeph LR, Casida LJ (1986) Gram-negative versus gram-positive (actinomycete) nonobligate bacterial predators of bacteria in soil. Appl Environ Microbiol 52:819–823

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Thank you to Dawn Ferris who commented on the early, soils-specific portion of the chapter and to Kurt Williamson who provided a number of helpful comments on the penultimate version. This work was supported by an Ohio State intramural grant awarded to Jeff LeJeune, Brian McSpadden Gardener, and myself.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen T. Abedon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abedon, S.T. (2011). Communication Among Phages, Bacteria, and Soil Environments. In: Witzany, G. (eds) Biocommunication in Soil Microorganisms. Soil Biology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14512-4_2

Download citation

Publish with us

Policies and ethics