Skip to main content

Plasmids of the Rhizobiaceae and Their Role in Interbacterial and Transkingdom Interactions

  • Chapter
  • First Online:
Biocommunication in Soil Microorganisms

Part of the book series: Soil Biology ((SOILBIOL,volume 23))

Abstract

Bacteria belonging to the Rhizobiaceae have more than a century now attracted scientific attention due to their ability to associate with plants and drastically affect plant development or well-being. Major role in the plant – microbe exchange that acts in host benefit or disease is played by indigenous plasmids of the bacteria, usually large in size and mobile among members of the same family or even order. Plasmids as such can be seen as a horizontally shared genetic pool that adds to the core genome of bacterial recipients and leads to an exchange of traits that promotes intricacy in plant–microbe interactions. Moreover, key functions on these replicons are prone to induction by plant–host or bacterial community signals. In this chapter reviewed are the plasmids of the Rhizobiaceae that mediate in interbacterial or transkingdom communication, particularly in light of the most recent advancements in the genomics field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allardet-Servent A, Michaux-Charachon S, Jumas-Bilak E, Karayan L, Ramuz M (1993) Presence of one linear and one circular chromosome in the Agrobacterium tumefaciens C58 genome. J Bacteriol 175:7869–7874

    PubMed  CAS  Google Scholar 

  • Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D, Carrère S, Cruveiller S, Dossat C, Lajus A, Marchetti M, Poinsot V, Rouy Z, Servin B, Saad M, Schenowitz C, Barbe V, Batut J, Médigue C, Masson-Boivin C (2008) Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res 18:1472–1483

    PubMed  CAS  Google Scholar 

  • Anand A, Uppalapati SR, Ryu CM, Allen SN, Kang L, Tang Y, Mysore KS (2008) Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol 146:703–715

    PubMed  CAS  Google Scholar 

  • Ashby AM, Watson MD, Loake GJ, Shaw CH (1988) Ti plasmid-specified chemotaxis of Agrobacterium tumefaciens C58C1 toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants. J Bacteriol 170:4181–4187

    PubMed  CAS  Google Scholar 

  • Atmakuri K, Christie P (2008) Translocation of oncogenic T-DNA and effector proteins to plant cells. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, pp 315–364

    Google Scholar 

  • Atmakuri K, Cascales E, Burton OT, Banta LM, Christie PJ (2007) Agrobacterium ParA/MinD-like VirC1 spatially coordinates early conjugative DNA transfer reactions. EMBO J 26:2540–2551

    PubMed  CAS  Google Scholar 

  • Badenoch-Jones J, Summons RE, Djordevic MA, Shine J, Letham DS, Rolfe BG (1982) Mass spectrometric quantification of indole-3-acetic acid in Rhizobium culture supernatants – relation to root hair curling and nodule initiation. Appl Environ Microbiol 44:275–280

    PubMed  CAS  Google Scholar 

  • Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, Davis RW, Federspiel NA, Long SR (2001) Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci USA 98:9883–9888

    PubMed  CAS  Google Scholar 

  • Barran LR, Ritchot N, Bromfield ES (2001) Sinorhizobium meliloti plasmid pRm1132f replicates by a rolling-circle mechanism. J Bacteriol 183:2704–2708

    PubMed  CAS  Google Scholar 

  • Beck von Bodman S, Hayman GT, Farrand SK (1992) Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor. Proc Natl Acad Sci USA 15:643–647

    Google Scholar 

  • Begum AA, Leibovitch S, Migner P, Zhang F (2001) Specific flavonoids induced nod gene expression and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments. J Exp Bot 52:1537–1543

    PubMed  CAS  Google Scholar 

  • Binns AN, Costantino P (1998) The Agrobacterium oncogenes. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae: molecular biology of model plant-associated bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 251–266

    Google Scholar 

  • Blosser-Middleton RS, Gray KM (2001) Multiple N-acyl homoserine lactone signals of Rhizobium leguminosarum are synthesized in a distinct temporal pattern. J Bacteriol 183:6771–6777

    PubMed  CAS  Google Scholar 

  • Boring LR, Swank WT, Waide JB, Henderson GS (1988) Sources, fates and impacts of nitrogen inputs to terrestrial ecosystems: review and synthesis. Biogeochemistry 6:119–159

    CAS  Google Scholar 

  • Bouzar H, Jones JB (2001) Agrobacterium larrymoorei sp. nov., a pathogen isolated from aerial tumours of Ficus benjamina. Int J Syst Evol Microbiol 51:1023–1026

    PubMed  CAS  Google Scholar 

  • Brencic A, Angert ER, Winans SC (2005) Unwounded plants elicit Agrobacterium vir gene induction and T-DNA transfer: transformed plant cells produce opines yet are tumour free. Mol Microbiol 57:1522–1531

    PubMed  CAS  Google Scholar 

  • Brewin NJ (2004) Plant cell wall remodeling in the rhizobia legume symbiosis. Crit Rev Plant Sci 23:293–316

    CAS  Google Scholar 

  • Britton MT, Escobar MA, Dandekar AM (2008) The oncogenes of A. tumefaciens and A. rhizogenes. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, pp 523–563

    Google Scholar 

  • Brom S, García-de los Santos A, Cervantes L, Palacios R, Romero D (2000) In Rhizobium etli symbiotic plasmid transfer, nodulation competitivity and cellular growth require interaction among different replicons. Plasmid 44:34–43

    PubMed  CAS  Google Scholar 

  • Brom S, Girard L, Tun-Garrido C, García-de los Santos A, Bustos P, González V, Romero D (2004) Transfer of the symbiotic plasmid of Rhizobium etli CFN42 requires cointegration with p42a, which may be mediated by site-specific recombination. J Bacteriol 186:7538–7548

    PubMed  CAS  Google Scholar 

  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LM, Yang W, Mayer JE, Roa-Rodríguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633

    PubMed  CAS  Google Scholar 

  • Broughton WJ, Perret X (1999) Genealogy of legume-Rhizobium symbioses. Curr Opin Plant Biol 2:305–311

    PubMed  CAS  Google Scholar 

  • Broughton WJ, Jabbouri S, Perret X (2000) Keys to symbiotic harmony. J Bacteriol 182:5641–5652

    PubMed  CAS  Google Scholar 

  • Broughton WJ, Hanin M, Relic B, Kopciñska J, Golinowski W, Simsek S, Ojanen-Reuhs T, Reuhs B, Marie C, Kobayashi H, Bordogna B, Le Quéré A, Jabbouri S, Fellay R, Perret X, Deakin WJ (2006) Flavonoid-inducible modifications to rhamnan O antigens are necessary for Rhizobium sp. strain NGR234-legume symbioses. J Bacteriol 188:3654–3663

    PubMed  CAS  Google Scholar 

  • Burr TJ, Katz BH, Bishop AL (1987) Populations of Agrobacterium in vineyard and non vineyard soils and grape roots in vineyards and nurseries. Plant Dis 71:617–620

    Google Scholar 

  • Cao H, Yang M, Zheng H, Zhang J, Zhong Z, Zhu J (2009) Complex quorum-sensing regulatory systems regulate bacterial growth and symbiotic nodulation in Mesorhizobium tianshanense. Arch Microbiol 191:283–289

    PubMed  CAS  Google Scholar 

  • Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J, Boistard P, Becker A, Boutry M, Cadieu E, Dréano S, Gloux S, Godrie T, Goffeau A, Kahn D, Kiss E, Lelaure V, Masuy D, Pohl T, Portetelle D, Pühler A, Purnelle B, Ramsperger U, Renard C, Thébault P, Vandenbol M, Weidner S, Galibert F (2001) Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc Natl Acad Sci USA 98:9877–9882

    PubMed  CAS  Google Scholar 

  • Carlier A, Uroz S, Smadja B, Fray R, Latour X, Dessaux Y, Faure D (2003) The Ti plasmid of Agrobacterium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding N-acyl homoserine lactonase activity. Appl Environ Microbiol 69:4989–4993

    PubMed  CAS  Google Scholar 

  • Carlier A, Chevrot R, Dessaux Y, Faure D (2004) The assimilation of gamma-butyrolactone in Agrobacterium tumefaciens C58 interferes with the accumulation of the N-acyl-homoserine lactone signal. Mol Plant Microbe Interact 17:951–957

    PubMed  CAS  Google Scholar 

  • Castillo-Ramírez S, Vázquez-Castellanos JF, González V, Cevallos MA (2009) Horizontal gene transfer and diverse functional constrains within the commonest plasmid replication-partitioning system in Alphaproteobacteria: the repABC operon. BMC Genomics 10:536

    PubMed  Google Scholar 

  • Cevallos MA, Porta H, Izquierdo J, Tun-Garrido C, García-de-los-Santos A, Dávila G, Brom S (2002) Rhizobium etli CFN42 contains at least three plasmids of the repABC family: a structural and evolutionary analysis. Plasmid 48:104–116

    PubMed  CAS  Google Scholar 

  • Cevallos MA, Cervantes-Rivera R, Gutiérrez-Ríos RM (2008) The repABC plasmid family. Plasmid 60:19–37

    PubMed  CAS  Google Scholar 

  • Chai Y, Winans SC (2005a) A small antisense RNA downregulates expression of an essential replicase protein of an Agrobacterium tumefaciens Ti plasmid. Mol Microbiol 56:1574–1585

    PubMed  CAS  Google Scholar 

  • Chai Y, Winans SC (2005b) RepB protein of an Agrobacterium tumefaciens Ti plasmid binds to two adjacent sites between repA and repB for plasmid partitioning and autorepression. Mol Microbiol 58:1114–1129

    PubMed  CAS  Google Scholar 

  • Chai Y, Tsai CS, Cho H, Winans SC (2007) Reconstitution of the biochemical activities of the AttJ repressor and the AttK, AttL, and AttM catabolic enzymes of Agrobacterium tumefaciens. J Bacteriol 189:3674–3679

    PubMed  CAS  Google Scholar 

  • Chang CH, Winans SC (1992) Functional roles assigned to the periplasmic, linker and receiver domains of the Agrobacterium tumefaciens VirA protein. J Bacteriol 174:7033–7039

    PubMed  CAS  Google Scholar 

  • Chen G, Jeffrey PD, Fuqua C, Shi Y, Chen L (2007) Structural basis for antiactivation in bacterial quorum sensing. Proc Natl Acad Sci USA 104:16474–16479

    PubMed  CAS  Google Scholar 

  • Chevrot R, Rosen R, Haudecoeur E, Cirou A, Shelp BJ, Ron E, Faure D (2006) GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 103:7460–7464

    PubMed  CAS  Google Scholar 

  • Cho H, Winans SC (2005) VirA and VirG activate the Ti plasmid repABC operon, elevating plasmid copy number in response to wound-released chemical signals. Proc Natl Acad Sci USA 102:14843–14848

    PubMed  CAS  Google Scholar 

  • Cho H, Winans SC (2007) TraA, TraC and TraD autorepress two divergent quorum-regulated promoters near the transfer origin of the Ti plasmid of Agrobacterium tumefaciens. Mol Microbiol 63:1769–1782

    PubMed  CAS  Google Scholar 

  • Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E (2005) Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59:451–485

    PubMed  CAS  Google Scholar 

  • Citovsky V, Zupan J, Warnick D, Zambryski P (1992) Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256:1802–1805

    PubMed  CAS  Google Scholar 

  • Citovsky V, Kozlovsky SV, Lacroix B, Zaltsman A, Dafny-Yelin M, Vyas S, Tovkach A, Tzfira T (2007) Biological systems of the host cell involved in Agrobacterium infection. Cell Microbiol 9:9–20

    PubMed  CAS  Google Scholar 

  • Clare BG, Kerr A, Jones DA (1990) Characteristics of the nopaline catabolic plasmid in Agrobacterium strains K84 and K1026 used for biological control of crown gall disease. Plasmid 23:126–137

    PubMed  CAS  Google Scholar 

  • Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365

    PubMed  CAS  Google Scholar 

  • Cornelis GR (2006) The type III secretion injectisome. Nat Rev Microbiol 4:811–825

    PubMed  CAS  Google Scholar 

  • Crews TE (1999) The presence of nitrogen fixing legumes in terrestrial communities: evolutionary vs. ecological considerations. Biogeochemistry 46:233–246

    CAS  Google Scholar 

  • Crossman LC, Castillo-Ramírez S, McAnnula C, Lozano L, Vernikos GS, Acosta JL, Ghazoui ZF, Hernández-González I, Meakin G, Walker AW, Hynes MF, Young JP, Downie JA, Romero D, Johnston AW, Dávila G, Parkhill J, González V (2008) A common genomic framework for a diverse assembly of plasmids in the symbiotic nitrogen fixing bacteria. PLoS ONE 3:e2567

    PubMed  Google Scholar 

  • Cubero J, Lastra B, Salcedo CI, Piquer J, López MM (2006) Systemic movement of Agrobacterium tumefaciens in several plant species. J Appl Microbiol 101:412–421

    PubMed  CAS  Google Scholar 

  • Cullimore JV, Ranjeva R, Bono JJ (2001) Perception of lipo-chitooligosaccharidic Nod factors in legumes. Trends Plant Sci 6:24–30

    PubMed  CAS  Google Scholar 

  • Daniels R, De Vos DE, Desair J, Raedschelders G, Luyten E, Rosemeyer V, Verreth C, Schoeters E, Vanderleyden J, Michiels J (2002) The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 277:462–468

    PubMed  CAS  Google Scholar 

  • Danino VE, Wilkinson A, Edwards A, Downie JA (2003) Recipient-induced transfer of the symbiotic plasmid pRL1JI in Rhizobium leguminosarum bv. viciae is regulated by a quorum-sensing relay. Mol Microbiol 50:511–525

    PubMed  CAS  Google Scholar 

  • Dessaux Y, Petit A, Tempe J (1993) Chemistry and biochemistry of opines, chemical mediators of parasitism. Phytochemistry 34:31–38

    CAS  Google Scholar 

  • Dessaux Y, Petit A, Farrand SK, Murphy PJ (1998) Opines and opine-like molecules involved in plant-Rhizobiaceae interactions. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae: molecular biology of model plant-associated bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 173–197

    Google Scholar 

  • D’Haeze W, Holsters M (2002) Nod factor structures, responses and perception during initiation of nodule development. Glycobiology 12:79–105

    Google Scholar 

  • Ding H, Hynes MF (2009) Plasmid transfer systems in the rhizobia. Can J Microbiol 55:1–11

    Google Scholar 

  • Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8:380–386

    PubMed  CAS  Google Scholar 

  • Farrand SK (1998) Conjugal plasmids and their transfer. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae: molecular biology of model plant-associated bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 199–233

    Google Scholar 

  • Farrand SK, Wang CL, Hong SB, O’Morchoe SB, Slota JE (1992) Deletion derivatives of pAgK84 and their use in the analysis of Agrobacterium plasmid functions. Plasmid 28:201–212

    PubMed  CAS  Google Scholar 

  • Farrand SK, Van Berkum PB, Oger P (2003) Agrobacterium is a definable genus of the family Rhizobiaceae. Int J Syst Evol Microbiol 53:1681–1687

    PubMed  CAS  Google Scholar 

  • Fauvart M, Michiels J (2008) Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis. FEMS Microbiol Lett 285:1–9

    PubMed  CAS  Google Scholar 

  • Freiberg C, Perret X, Broughton WJ, Rosenthal A (1996) Sequencing the 500-kb GC-rich symbiotic replicon of Rhizobium sp NGR234 using dye terminators and a thermostable “sequenase”: a beginning. Genome Res 6:590–600

    PubMed  CAS  Google Scholar 

  • Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:394–401

    PubMed  CAS  Google Scholar 

  • Finan TM, Weidner S, Wong K, Buhrmester J, Chain P, Vorhölter FJ, Hernandez-Lucas I, Becker A, Cowie A, Gouzy J, Golding B, Pühler A (2001) The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc Natl Acad Sci USA 98:9889–9894

    PubMed  CAS  Google Scholar 

  • Fuqua C (2008) Agrobacterium-host attachment and biofilm formation. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, pp 243–277

    Google Scholar 

  • Fuqua WC, Winans SC (1994) A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J Bacteriol 176:2796–2806

    PubMed  CAS  Google Scholar 

  • Fuqua C, Burbea M, Winans SC (1995) Activity of the Agrobacterium Ti plasmid conjugal transfer regulator TraR is inhibited by the product of the traM gene. J Bacteriol 177:1367–1373

    PubMed  CAS  Google Scholar 

  • Fuqua C, Winans SC, Greenberg EP (1996) Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu Rev Microbiol 50:727–751

    PubMed  CAS  Google Scholar 

  • Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    PubMed  CAS  Google Scholar 

  • Geier T, Eimert K, Scherer R, Nickel C (2008) Production and rooting behaviour of rol B-transgenic plants of grape rootstock ‘Richter 110’ (Vitis berlandieri × V rupestris). Plant Cell Tissue Organ Cult 94:269–280

    Google Scholar 

  • Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Verméglio A, Médigue C, Sadowsky M (2007) Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312

    PubMed  Google Scholar 

  • Gomes-Barcellos F, Menna P, da Silva Batista JS, Hungria M (2007) Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian savannah soil. Appl Environ Microbiol 73:2635–2643

    Google Scholar 

  • González V, Bustos P, Ramírez-Romero MA, Medrano-Soto A, Salgado H, Hernández-González I, Hernández-Celis JC, Quintero V, Moreno-Hagelsieb G, Girard L, Rodríguez O, Flores M, Cevallos MA, Collado-Vides J, Romero D, Dávila G (2003) The mosaic structure of the symbiotic plasmid of Rhizobium etli CFN42 and its relation to other symbiotic genome compartments. Genome Biol 4:R36

    PubMed  Google Scholar 

  • González V, Santamaría RI, Bustos P, Hernández-González I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramírez MA, Jiménez-Jacinto V, Collado-Vides J, Dávila G (2006) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci USA 103:3834–3839

    PubMed  Google Scholar 

  • Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman BS, Cao Y, Askenazi M, Halling C, Mullin L, Houmiel K, Gordon J, Vaudin M, Iartchouk O, Epp A, Liu F, Wollam C, Allinger M, Doughty D, Scott C, Lappas C, Markelz B, Flanagan C, Crowell C, Gurson J, Lomo C, Sear C, Strub G, Cielo C, Slater S (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294:2323–2328

    PubMed  CAS  Google Scholar 

  • Guo X, Flores M, Mavingui P, Fuentes SI, Hernández G, Dávila G, Palacios R (2003) Natural genomic design in Sinorhizobium meliloti: novel genomic architectures. Genome Res 13:1810–1817

    PubMed  CAS  Google Scholar 

  • Haudecoeur E, Tannières M, Cirou A, Raffoux A, Dessaux Y, Faure D (2009) Different regulation and roles of lactonases AiiB and AttM in Agrobacterium tumefaciens C58. Mol Plant Microbe Interact 22:529–537

    PubMed  CAS  Google Scholar 

  • Hao G, Burr TJ (2006) Regulation of long-chain N-acyl-homoserine lactones in Agrobacterium vitis. J Bacteriol 188:2173–2183

    PubMed  CAS  Google Scholar 

  • He X, Chang W, Pierce DL, Seib LO, Wagner J, Fuqua C (2003) Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. J Bacteriol 185:809–822

    PubMed  CAS  Google Scholar 

  • Hoang HH, Gurich N, González JE (2008) Regulation of motility by the ExpR/Sin quorum-sensing system in Sinorhizobium meliloti. J Bacteriol 190:861–871

    PubMed  CAS  Google Scholar 

  • Hong SB, Hwang I, Dessaux Y, Guyon P, Kim KS, Farrand SK (1997) A T-DNA gene required for agropine biosynthesis by transformed plants is functionally and evolutionarily related to a Ti plasmid gene required for catabolism of agropine by Agrobacterium strains. J Bacteriol 179:4831–4840

    PubMed  CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    PubMed  CAS  Google Scholar 

  • Hooykaas PJ, Klapwijk PM, Nuti MP, Schilperoort RA, Rorsch A (1977) Transfer of the Agrobacterium tumefaciens-Ti plasmid to avirulent agrobacteria and to Rhizobium explanta. J Gen Microbiol 98:477–484

    Google Scholar 

  • Hooykaas PJ, den Dulk-Ras H, Ooms G, Schilperoort RA (1980) Interactions between octopine and nopaline plasmids in Agrobacterium tumefaciens. J Bacteriol 143:1295–1306

    PubMed  CAS  Google Scholar 

  • Hooykaas PJJ, van Brussel AAN, den Dulk-Ras H, van Slogteren GM, Schilperoort RA (1981) Sym plasmid of Rhizobium trifolii expressed in different rhizobial species and Agrobacterium tumefaciens. Nature 291:351–353

    CAS  Google Scholar 

  • Howard EA, Zupan JR, Citovsky V, Zambryski PC (1992) The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: implications for nuclear uptake of DNA in plant cells. Cell 68:109–118

    PubMed  CAS  Google Scholar 

  • Hubber A, Vergunst AC, Sullivan JT, Hooykaas PJ, Ronson CW (2004) Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol Microbiol 54:561–574

    PubMed  CAS  Google Scholar 

  • Hwang I, Li PL, Zhang L, Piper KR, Cook DM, Tate ME, Farrand SK (1994) TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer. Proc Natl Acad Sci USA 91:4639–4643

    PubMed  CAS  Google Scholar 

  • Hwang I, Cook DM, Farrand SK (1995) A new regulatory element modulates homoserine lactone-mediated autoinduction of Ti plasmid conjugal transfer. J Bacteriol 177:449–458

    PubMed  CAS  Google Scholar 

  • Izquierdo J, Venkova-Canova T, Ramírez-Romero MA, Téllez-Sosa J, Hernández-Lucas I, Sanjuan J, Cevallos MA (2005) An antisense RNA plays a central role in the replication control of a repC plasmid. Plasmid 54:259–277

    PubMed  CAS  Google Scholar 

  • Jin SG, Roitsch T, Christie PJ, Nester EW (1990a) The regulatory VirG protein specifically binds to a cis-acting regulatory sequence involved in transcriptional activation of Agrobacterium tumefaciens virulence genes. J Bacteriol 172:531–537

    PubMed  CAS  Google Scholar 

  • Jin SG, Prusti RK, Roitsch T, Ankenbauer RG, Nester EW (1990b) Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphorylated VirA protein: essential role in biological activity of VirG. J Bacteriol 172:4945–4950

    PubMed  CAS  Google Scholar 

  • Johnson TM, Das A (1998) Organization and regulation of expression of the Agrobacterium virulence genes. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae: molecular biology of model plant-associated bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 267–279

    Google Scholar 

  • Johnston AWB, Hombrecher G, Brewin NJ, Cooper MC (1982) Two transmissible plasmids in Rhizobium leguminosarum strain 300. J Gen Microbiol 128:85–93

    Google Scholar 

  • Jourand P, Giraud E, Béna G, Sy A, Willems A, Gillis M, Dreyfus B, de Lajudie P (2004) Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273

    PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197

    PubMed  Google Scholar 

  • Kersters K, De Ley J (1984) Genus III Agrobacterium Conn. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1, 8th edn. The Williams and Wilkins Co, Baltimore-London, pp 244–254

    Google Scholar 

  • Kim KS, Farrand SK (1996) Ti plasmid-encoded genes responsible for catabolism of the crown gall opine mannopine by Agrobacterium tumefaciens are homologs of the T-region genes responsible for synthesis of this opine by the plant tumor. J Bacteriol 178:3275–3284

    PubMed  CAS  Google Scholar 

  • Kim H, Farrand SK (1998) Opine catabolic loci from Agrobacterium plasmids confer chemotaxis to their cognate substrates. Mol Plant Microbe Interact 11:131–143

    PubMed  CAS  Google Scholar 

  • Kim JG, Park BK, Kim SU, Choi D, Nahm BH, Moon JS, Reader JS, Farrand SK, Hwang I (2006) Bases of biocontrol: sequence predicts synthesis and mode of action of agrocin 84, the Trojan horse antibiotic that controls crown gall. Proc Natl Acad Sci USA 103:8846–8851

    PubMed  CAS  Google Scholar 

  • Kinkle BK, Schmidt EL (1991) Transfer of the pea symbiotic plasmid pJB5JI in nonsterile soil. Appl Environ Microbiol 57:3264–3269

    PubMed  CAS  Google Scholar 

  • Klein DT, Klein RM (1953) Transmittance of tumor-inducing ability to avirulent crown-gall and related bacteria. J Bacteriol 66:220–228

    PubMed  CAS  Google Scholar 

  • Krimi Z, Petit A, Mougel C, Dessaux Y, Nesme X (2002) Seasonal fluctuations and long-term persistence of pathogenic populations of Agrobacterium spp. in soils. Appl Environ Microbiol 68:3358–3365

    PubMed  CAS  Google Scholar 

  • Lacroix B, Loyter A, Citovsky V (2008) Association of the Agrobacterium T-DNA-protein complex with plant nucleosomes. Proc Natl Acad Sci USA 105:15429–15434

    PubMed  CAS  Google Scholar 

  • Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol 54:575–594

    PubMed  Google Scholar 

  • Lessl M, Lanka E (1994) Common mechanisms in bacterial conjugation and Ti-mediated T-DNA transfer to plant cells. Cell 77:321–324

    PubMed  CAS  Google Scholar 

  • Li PL, Farrand SK (2000) The replicator of the nopaline-type Ti plasmid pTiC58 is a member of the repABC family and is influenced by the TraR dependent quorum-sensing regulatory system. J Bacteriol 182:179–188

    PubMed  CAS  Google Scholar 

  • Liu P, Nester EW (2006) Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58. Proc Natl Acad Sci USA 103:4658–4662

    PubMed  CAS  Google Scholar 

  • Loh J, Carlson RW, York WS, Stacey G (2002) Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proc Natl Acad Sci USA 99:14446–14451

    PubMed  CAS  Google Scholar 

  • López-López MJ, Vicedo B, Orellana N, Piquer J, López MM (1999) Behavior of a virulent strain derived from Agrobacterium radiobacter strain K84 after spontaneous Ti plasmid acquisition. Phytopathology 89:286–292

    PubMed  Google Scholar 

  • Louvrier P, Laguerre G, Amarger N (1996) Distribution of symbiotic genotypes in Rhizobium leguminosarum biovar viciae populations isolated directly from soils. Appl Environ Microbiol 62:4202–4205

    PubMed  CAS  Google Scholar 

  • MacLellan SR, Smallbone LA, Sibley CD, Finan TM (2005) The expression of a novel antisense gene mediates incompatibility within the large repABC family of alpha-proteobacterial plasmids. Mol Microbiol 55:611–623

    PubMed  CAS  Google Scholar 

  • Marie C, Broughton WJ, Deakin WJ (2001) Rhizobium type III secretion systems: legume charmers or alarmers? Curr Opin Plant Biol 4:336–342

    PubMed  CAS  Google Scholar 

  • Marie C, Deakin WJ, Ojanen-Reuhs T, Diallo E, Reuhs B, Broughton WJ, Perret X (2004) TtsI, a key regulator of Rhizobium species NGR234 is required for type III-dependent protein secretion and synthesis of rhamnose-rich polysaccharides. Mol Plant Microbe Interact 17:958–966

    PubMed  CAS  Google Scholar 

  • Marketon MM, Gronquist MR, Eberhard A, González JE (2002) Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones. J Bacteriol 184:5686–5695

    PubMed  CAS  Google Scholar 

  • Marketon MM, Glenn SA, Eberhard A, González JE (2003) Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 185:325–331

    PubMed  CAS  Google Scholar 

  • Markowitz VM, Szeto E, Palaniappan K, Grechkin Y, Chu K, Chen IM, Dubchak I, Anderson I, Lykidis A, Mavromatis K, Ivanova NN, Kyrpides NC (2008) The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions. Nucleic Acids Res (Database issue) 36:D528–D533

    CAS  Google Scholar 

  • Mavingui P, Flores M, Guo X, Dávila G, Perret X, Broughton WJ, Palacios R (2002) Dynamics of genome architecture in Rhizobium sp. strain NGR234. J Bacteriol 184:171–176

    PubMed  CAS  Google Scholar 

  • McAnulla C, Edwards A, Sanchez-Contreras M, Sawers RG, Downie JA (2007) Quorum-sensing-regulated transcriptional initiation of plasmid transfer and replication genes in Rhizobium leguminosarum biovar viciae. Microbiology 153:2074–2082

    PubMed  CAS  Google Scholar 

  • McClure NC, Ahmadi AR, Clare BG (1998) Construction of a range of derivatives of the biological control strain Agrobacterium rhizogenes K84: a study of factors involved in biological control of crown gall disease. Appl Environ Microbiol 64:3977–3982

    PubMed  CAS  Google Scholar 

  • McCullen CA, Binns AN (2006) Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22:101–127

    PubMed  CAS  Google Scholar 

  • Michiels J, Van Soom T, D’hooghe I, Dombrecht B, Benhassine T, de Wilde P, Vanderleyden J (1998) The Rhizobium etli rpoN locus: DNA sequence analysis and phenotypical characterization of rpoN, ptsN, and ptsA mutants. J Bacteriol 180:1729–1740

    PubMed  CAS  Google Scholar 

  • Mohmmed A, Sharma RS, Ali S, Babu CR (2001) Molecular diversity of the plasmid genotypes among Rhizobium gene pools of Sesbanias from different habitats of a semi-arid region (Delhi). FEMS Microbiol Lett 205:171–178

    PubMed  CAS  Google Scholar 

  • Moore L, Warren G, Strobel G (1979) Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid 2:617–626

    PubMed  CAS  Google Scholar 

  • Moriguchi K, Maeda Y, Satou M, Hardayani NS, Kataoka M, Tanaka N, Yoshida K (2001) The complete nucleotide sequence of a plant root-inducing (Ri) plasmid indicates its chimeric structure and evolutionary relationship between tumor-inducing (Ti) and symbiotic (Sym) plasmids in Rhizobiaceae. J Mol Biol 307:771–784

    PubMed  CAS  Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the beta-subclass of proteobacteria. Nature 411:948–950

    PubMed  CAS  Google Scholar 

  • Mozo T, Cabrera E, Ruiz-Argüeso T (1988) Diversity of plasmid profiles and conservation of symbiotic nitrogen fixation genes in newly isolated Rhizobium strains nodulating sulla (Hedysarum coronarium L.). Appl Environ Microbiol 54:1262–1267

    PubMed  CAS  Google Scholar 

  • Mylona P, Pawlowski K, Bisseling T (1995) Symbiotic nitrogen fixation. Plant Cell 7:869–885

    PubMed  CAS  Google Scholar 

  • Nonaka S, Yuhashi K, Takada K, Sugaware M, Minamisawa K, Ezura H (2008) Ethylene production in plants during transformation suppresses vir gene expression in Agrobacterium tumefaciens. New Phytol 178:647–656

    PubMed  CAS  Google Scholar 

  • Novick RP (1987) Plasmid incompatibility. Microbiol Rev 51:381–395

    PubMed  CAS  Google Scholar 

  • Oger P, Kim KS, Sackett RL, Piper KR, Farrand SK (1998) Octopine-type Ti plasmids code for a mannopine-inducible dominant-negative allele of traR, the quorum-sensing activator that regulates Ti plasmid conjugal transfer. Mol Microbiol 27:277–288

    PubMed  CAS  Google Scholar 

  • Oger P, Farrand SK (2001) Co-evolution of the agrocinopine opines and the agrocinopine-mediated control of TraR, the quorum-sensing activator of the Ti plasmid conjugation system. Mol Microbiol 41:1173–1185

    PubMed  CAS  Google Scholar 

  • Oger P, Farrand SK (2002) Two opines control conjugal transfer of an Agrobacterium plasmid by regulating expression of separate copies of the quorum-sensing activator gene traR. J Bacteriol 184:1121–1131

    PubMed  CAS  Google Scholar 

  • Otten L, Burr T, Szegedi E (2008) Agrobacterium: a disease-causing bacterium. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, pp 1–46

    Google Scholar 

  • Pappas KM (2008) Cell-cell signaling and the Agrobacterium tumefaciens Ti plasmid copy number fluctuations. Plasmid 60:89–107

    PubMed  CAS  Google Scholar 

  • Pappas KM, Winans SC (2003a) A LuxR-type regulator from Agrobacterium tumefaciens elevates Ti plasmid copy number by activating transcription of plasmid replication genes. Mol Microbiol 48:1059–1073

    PubMed  CAS  Google Scholar 

  • Pappas KM, Winans SC (2003b) The RepA and RepB autorepressors and TraR play opposing roles in the regulation of a Ti plasmid repABC operon. Mol Microbiol 49:441–455

    PubMed  CAS  Google Scholar 

  • Pappas KM, Weingart CL, Winans SC (2004) Chemical communication in proteobacteria: biochemical and structural studies of signal synthases and receptors required for intercellular signalling. Mol Microbiol 53:755–769

    PubMed  CAS  Google Scholar 

  • Paulsen IT, Seshadri R, Nelson KE, Eisen JA, Heidelberg JF, Read TD, Dodson RJ, Umayam L, Brinkac LM, Beanan MJ, Daugherty SC, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Nelson WC, Ayodeji B, Kraul M, Shetty J, Malek J, Van Aken SE, Riedmuller S, Tettelin H, Gill SR, White O, Salzberg SL, Hoover DL, Lindler LE, Halling SM, Boyle SM, Fraser CM (2002) The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc Natl Acad Sci USA 99:13148–13153

    PubMed  CAS  Google Scholar 

  • Pazour GJ, Das A (1990) Characterization of the VirG binding site of Agrobacterium tumefaciens. Nucleic Acids Res 18:6909–6913

    PubMed  CAS  Google Scholar 

  • Penyalver R, Oger P, López MM, Farrand SK (2001) Iron-binding compounds from Agrobacterium spp. biological control strain Agrobacterium rhizogenes K84 produces a hydroxamate siderophore. Appl Environ Microbiol 67:654–664

    PubMed  CAS  Google Scholar 

  • Pérez-Mendoza D, Sepúlveda E, Pando V, Muñoz S, Nogales J, Olivares J, Soto MJ, Herrera-Cervera JA, Romero D, Brom S, Sanjuán J (2005) Identification of the rctA gene, which is required for repression of conjugative transfer of rhizobial symbiotic megaplasmids. J Bacteriol 187:7341–7350

    PubMed  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    PubMed  CAS  Google Scholar 

  • Petit A, David C, Dahl GA, Ellis JG, Guyon P, Casse-Delbart F, Tempé J (1983) Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 190:204–214

    CAS  Google Scholar 

  • Piper KR, Beck von Bodman S, Farrand SK (1993) Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362:448–450

    PubMed  CAS  Google Scholar 

  • Prinsen E, Chauvaux N, Schmidt J, John M, Wieneke U, De Greef J, Schell J, Van Onckelen H (1991) Stimulation of indole-3-acetic acid production in Rhizobium by flavonoids. FEBS Lett 282:53–55

    PubMed  CAS  Google Scholar 

  • Pu XA, Goodman RN (1993) Effects of fumigation and biological control on infection of indexed crown gall free grape plants. Am J Enol Vitic 44:241–248

    Google Scholar 

  • Pueppke SG, Broughton WJ (1999) Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant Microbe Interact 12:293–318

    PubMed  CAS  Google Scholar 

  • Ramírez-Romero MA, Téllez-Sosa J, Barrios H, Pérez-Oseguera A, Rosas V, Cevallos MA (2001) RepA negatively autoregulates the transcription of the repABC operon of the Rhizobium etli symbiotic plasmid basic replicon. Mol Microbiol 42:195–204

    PubMed  Google Scholar 

  • Ramsay JP, Sullivan JT, Jambari N, Ortori CA, Heeb S, Williams P, Barrett DA, Lamont IL, Ronson CW (2009) A LuxRI-family regulatory system controls excision and transfer of the Mesorhizobium loti strain R7A symbiosis island by activating expression of two conserved hypothetical genes. Mol Microbiol 73:1141–1155

    PubMed  CAS  Google Scholar 

  • Ream W (2008) Production of a mobile T-DNA by Agrobacterium tumefaciens. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, pp 279–313

    Google Scholar 

  • Renier A, Jourand P, Rapior S, Poinsot V, Sy A, Dreyfus B, Moulin L (2008) Symbiotic properties of Methylobacterium nodulans ORS 2060T: a classic process for an atypical symbiont. Soil Biol Biochem 40:1404–1412

    CAS  Google Scholar 

  • Rogel MA, Torres C, Lloret L, Rosenblueth M, Hernández-Lucas I, Martínez L, Martínez J, Martínez-Romero E (2006) Lateral transfer of Rhizobium symbiotic plasmids leading to genomic innovation. In: Sánchez F, Quinto C, López-Lara IM, Geiger O (eds) Biology of plant microbe interactions, vol 5. International society for molecular plant–microbe interactions, St. Paul, Minnesota, pp 310–318

    Google Scholar 

  • Romero D, Palacios R (1997) Gene amplification and genomic plasticity in prokaryotes. Annu Rev Genet 31:91–111

    PubMed  CAS  Google Scholar 

  • Romero D, Martínez-Salazar J, Girard L, Brom S, Dávilla G, Palacios R, Flores M, Rodríguez C (1995) Discrete amplifiable regions (amplicons) in the symbiotic plasmid of Rhizobium etli CFN42. J Bacteriol 177:973–980

    PubMed  CAS  Google Scholar 

  • Schofield PR, Gibson AH, Dudman WF, Watson JM (1987) Evidence for genetic exchange and recombination of Rhizobium symbiotic plasmids in a soil population. Appl Environ Microbiol 53:2942–2947

    PubMed  CAS  Google Scholar 

  • Schmeisser C, Liesegang H, Krysciak D, Bakkou N, Le Quéré A, Wollherr A, Heinemeyer I, Morgenstern B, Pommerening-Röser A, Flores M, Palacios R, Brenner S, Gottschalk G, Schmitz RA, Broughton WJ, Perret X, Strittmatter AW, Streit WR (2009) Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems. Appl Environ Microbiol 75:4035–4045

    PubMed  CAS  Google Scholar 

  • Schrammeijer B, den Dulk-Ras A, Vergunst AC, Jurado Jácome E, Hooykaas PJ (2003) Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Nucleic Acids Res 31:860–868

    PubMed  CAS  Google Scholar 

  • Segovia L, Piñero D, Palacios R, Martínez-Romero E (1991) Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum. Appl Environ Microbiol 57:426–433

    PubMed  CAS  Google Scholar 

  • Sepúlveda E, Pérez-Mendoza D, Ramírez-Romero MA, Soto MJ, López-Lara IM, Geiger O, Sanjuán J, Brom S, Romero D (2008) Transcriptional interference and repression modulate the conjugative ability of the symbiotic plasmid of Rhizobium etli. J Bacteriol 190:4189–4197

    PubMed  Google Scholar 

  • Setubal JC, Wood D, Burr T, Farrand S, Goldman B, Goodner B, Otten L, Slater S (2009) The genomics of Agrobacterium: insights into its pathogenicity, biocontrol and evolution. In: Jackson R (ed) Plant pathogenic bacteria: genomics and molecular biology. Caister Academic Press, Norfolk, UK, pp 91–112

    Google Scholar 

  • Sheu SY, Chen WM, Lin GH (2007) Characterization and application of a rolling-circle-type plasmid from Cupriavidus taiwanensis. Plasmid 57:275–285

    PubMed  CAS  Google Scholar 

  • Silva C, Vinuesa P, Eguiarte LE, Souza V, Martínez-Romero E (2005) Evolutionary genetics and biogeographic structure of Rhizobium gallicum sensu lato, a widely distributed bacterial symbiont of diverse legumes. Mol Ecol 14:4033–4050

    PubMed  CAS  Google Scholar 

  • Slater SC, Goodner BW, Setubal JC, Goldman BS, Wood DW, Nester EW (2008) The Agrobacterium tumefaciens C58 genome. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, pp 149–181

    Google Scholar 

  • Slater SC, Goldman BS, Goodner B, Setubal JC, Farrand SK, Nester EW, Burr TJ, Banta L, Dickerman AW, Paulsen I, Otten L, Suen G, Welch R, Almeida NF, Arnold F, Burton OT, Du Z, Ewing A, Godsy E, Heisel S, Houmiel KL, Jhaveri J, Lu J, Miller NM, Norton S, Chen Q, Phoolcharoen W, Ohlin V, Ondrusek D, Pride N, Stricklin SL, Sun J, Wheeler C, Wilson L, Zhu H, Wood DW (2009) Genome sequences of three Agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J Bacteriol 191:2501–2511

    PubMed  CAS  Google Scholar 

  • Smith EF, Brown NA, Townsend CO (1912) The structure and development of crown gall: a plant cancer. US Dept Agric Bur Plant Ind Bull 255:1–61

    Google Scholar 

  • Soto MJ, Domínguez-Ferreras A, Pérez-Mendoza D, Sanjuán J, Olivares J (2009) Mutualism versus pathogenesis: the give-and-take in plant-bacteria interactions. Cell Microbiol 11:381–388

    PubMed  CAS  Google Scholar 

  • Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257–288

    PubMed  CAS  Google Scholar 

  • Sprent JI (2001) Nodulation of legumes. The Cromwell press Ltd, Royal Botanical Gardens, Kew, London

    Google Scholar 

  • Sprent JI (2008) 60 Ma of legume nodulation. What’s new? What’s changing? J Exp Bot 59:1081–1084

    PubMed  CAS  Google Scholar 

  • Sprent JI, James EK (2008) Legume-rhizobial symbiosis: an anorexic model? New Phytol 179:3–5

    PubMed  Google Scholar 

  • Stacey G, McAlvin CB, Kim SY, Olivares J, Soto MJ (2006) Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicus and Medicago truncatula. Plant Physiol 141:1473–1481

    PubMed  CAS  Google Scholar 

  • Stachel SE, Zambryski PC (1986) virA and virG control the plant-induced activation of the T-DNA transfer process of A. tumefaciens. Cell 46:325–333

    PubMed  CAS  Google Scholar 

  • Stiens M, Schneiker S, Keller M, Kuhn S, Pühler A, Schlüter A (2006) Sequence analysis of the 144-kilobase accessory plasmid pSmeSM11a, isolated from a dominant Sinorhizobium meliloti strain identified during a long-term field release experiment. Appl Environ Microbiol 72:3662–3672

    PubMed  CAS  Google Scholar 

  • Strobel GA, Nachimias A, Hess WM (1988) Improvements in the growth and yield of olive trees by transformation with the Ri plasmid of Agrobacterium rhizogenes. Can J Bot 66:2581–2585

    Google Scholar 

  • Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW (1995) Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci USA 92:8985–8989

    PubMed  CAS  Google Scholar 

  • Szegedi E, Otten L (1998) Incompatibility properties of tartrate utilization plasmids derived from Agrobacterium vitis strains. Plasmid 39:35–40

    PubMed  CAS  Google Scholar 

  • Szegedi E, Otten L, Czakó M (1992) Diverse types of tartrate plasmids in Agrobacterium tumefaciens. Mol Plant Microbe Interact 5:435–438

    CAS  Google Scholar 

  • Szegedi E, Czako M, Otten L (1996) Further evidence that the vitopine-type pTi’s of Agrobacterium vitis represent a novel group of Ti plasmids. Mol Plant Microbe Interact 9:139–143

    CAS  Google Scholar 

  • Tanaka N, Oka A (1994) Restriction endonuclease map of the root-inducing plasmid (pRi1724) of Agrobacterium rhizogenes strain MAFF03-01724. Biosci Biotech Biochem 58:297–299

    CAS  Google Scholar 

  • Tettelin H, Riley D, Cattuto C, Medini D (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11:472–477

    PubMed  CAS  Google Scholar 

  • Teyssier-Cuvelle S, Oger P, Mougel C, Groud K, Farrand SK, Nesme X (2004) A highly selectable and highly transferable Ti plasmid to study conjugal host range and Ti plasmid dissemination in complex ecosystems. Microb Ecol 48:10–18

    PubMed  CAS  Google Scholar 

  • Theunis M, Kobayashi H, Broughton WJ, Prinsen E (2004) Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol Plant Microbe Interact 17:1153–1161

    PubMed  CAS  Google Scholar 

  • Tun-Garrido C, Bustos P, González V, Brom S (2003) Conjugative transfer of p42a from Rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid, is regulated by quorum sensing. J Bacteriol 185:1681–1692

    PubMed  CAS  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2004) Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431:87–92

    PubMed  CAS  Google Scholar 

  • Tzfira T, Citovsky V (2008) Agrobacterium: from biology to biotechnology. Springer, New York

    Google Scholar 

  • van Berkum P, Eardly BD (1998) Molecular evolutionary systematics of the Rhizobiaceae. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae: molecular biology of model plant-associated bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 1–24

    Google Scholar 

  • van Egeraat AWSM (1975) The possible role of homoserine in the development of Rhizobium leguminosarum in the rhizosphere of pea seedlings. Plant Soil 42:381–386

    Google Scholar 

  • van Larebeke N, Engler G, Holsters M, Van den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature 252:169–170

    PubMed  Google Scholar 

  • Vannini A, Volpari C, Gargioli C, Muraglia E, Cortese R, De Francesco R, Neddermann P, Marco SD (2002) The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J 21:4393–4401

    PubMed  CAS  Google Scholar 

  • Vasanthakumar A, McManus PS (2004) Indole-3-acetic acid-producing bacteria are associated with cranberry stem gall. Phytopathology 94:1164–1171

    PubMed  CAS  Google Scholar 

  • Venkova-Canova T, Soberón NE, Ramírez-Romero MA, Cevallos MA (2004) Two discrete elements are required for the replication of a repABC plasmid: an antisense RNA and a stem-loop structure. Mol Microbiol 54:1431–1444

    PubMed  CAS  Google Scholar 

  • Wang L, Helmann JD, Winans SC (1992) The A tumefaciens transcriptional activator OccR causes a bend at a target promoter, which is partially relaxed by a plant tumor metabolite. Cell 69:659–667

    PubMed  CAS  Google Scholar 

  • Watson B, Currier TC, Gordon MP, Chilton MD, Nester EW (1975) Plasmid required for virulence of Agrobacterium tumefaciens. J Bacteriol 123:255–264

    PubMed  CAS  Google Scholar 

  • Welander M, Pawlicki N, Holefors A, Wilson F (1998) Genetic transformation of the apple rootstock M26 with the rolB gene and its influence on rooting. J Plant Physiol 153:371–380

    CAS  Google Scholar 

  • Wernegreen JJ, Riley MA (1999) Comparison of the evolutionary dynamics of symbiotic and housekeeping loci: a case for the genetic coherence of rhizobial lineages. Mol Biol Evol 16:98–113

    PubMed  CAS  Google Scholar 

  • White FF, Nester EW (1980a) Hairy root: plasmid encodes virulence traits in Agrobacterium rhizogenes. J Bacteriol 141:1134–1141

    PubMed  CAS  Google Scholar 

  • White FF, Nester EW (1980b) Relationship of plasmids responsible for hairy root and crown gall tumorigenicity. J Bacteriol 144:710–720

    PubMed  CAS  Google Scholar 

  • White CE, Winans SC (2007) Cell-cell communication in the plant pathogen Agrobacterium tumefaciens. Philos Trans R Soc Lond B Biol Sci 362:1135–1148

    PubMed  CAS  Google Scholar 

  • Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in gram-negative bacteria. FEMS Microbiol Rev 25:365–404

    PubMed  CAS  Google Scholar 

  • Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938

    PubMed  CAS  Google Scholar 

  • Winans SC, Mantis NJ, Chen CY, Chang CH, Han DC (1994) Host recognition by the VirA, VirG two-component regulatory proteins of Agrobacterium tumefaciens. Res Microbiol 145:461–473

    PubMed  CAS  Google Scholar 

  • Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, Almeida NF Jr, Woo L, Chen Y, Paulsen IT, Eisen JA, Karp PD, Bovee D Sr, Chapman P, Clendenning J, Deatherage G, Gillet W, Grant C, Kutyavin T, Levy R, Li MJ, McClelland E, Palmieri A, Raymond C, Rouse G, Saenphimmachak C, Wu Z, Romero P, Gordon D, Zhang S, Yoo H, Tao Y, Biddle P, Jung M, Krespan W, Perry M, Gordon-Kamm B, Liao L, Kim S, Hendrick C, Zhao ZY, Dolan M, Chumley F, Tingey SV, Tomb JF, Gordon MP, Olson MV, Nester EW (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:2317–2323

    PubMed  CAS  Google Scholar 

  • Xu XQ, Pan SQ (2000) An Agrobacterium catalase is a virulence factor involved in tumorigenesis. Mol Microbiol 35:407–414

    PubMed  CAS  Google Scholar 

  • Yang M, Sun K, Zhou L, Yang R, Zhong Z, Zhu J (2009) Functional analysis of three AHL autoinducer synthase genes in Mesorhizobium loti reveals the important role of quorum sensing in symbiotic nodulation. Can J Microbiol 55:210–214

    PubMed  CAS  Google Scholar 

  • Yanofsky MF, Porter SG, Young C, Albright LM, Gordon MP, Nester EW (1986) The virD operon of Agrobacterium tumefaciens encodes a site-specific endonuclease. Cell 47:471–477

    PubMed  CAS  Google Scholar 

  • Young JP, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson AR, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34

    PubMed  Google Scholar 

  • Young JM (2008) Agrobacterium – taxonomy of plant pathogenic Rhizobium species. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, pp 183–220

    Google Scholar 

  • Yuan ZC, Edlind MP, Liu P, Saenkham P, Banta LM, Wise AA, Ronzone E, Binns AN, Kerr K, Nester EW (2007) The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium. Proc Natl Acad Sci USA 104:11790–11795

    PubMed  CAS  Google Scholar 

  • Yuan ZC, Haudecoeur E, Faure D, Kerr KF, Nester EW (2008) Comparative transcriptome analysis of Agrobacterium tumefaciens in response to plant signal salicylic acid, indole-3-acetic acid and gamma-amino butyric acid reveals signalling cross-talk and Agrobacterium-plant co-evolution. Cell Microbiol 10:2339–2354

    PubMed  CAS  Google Scholar 

  • Zhang J, Boone L, Kocz R, Zhang C, Binns AN, Lynn DG (2000) At the maize/Agrobacterium interface: natural factors limiting host transformation. Chem Biol 7:611–621

    PubMed  CAS  Google Scholar 

  • Zhang RG, Pappas T, Brace JL, Miller PC, Oulmassov T, Molyneaux JM, Anderson JC, Bashkin JK, Winans SC, Joachimiak A (2002a) Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417:971–974

    PubMed  CAS  Google Scholar 

  • Zhang HB, Wang LH, Zhang LH (2002b) Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 99:4638–4643

    PubMed  CAS  Google Scholar 

  • Zhang LH (2003) Quorum quenching and proactive host defense. Trends Plant Sci 8:238–244

    PubMed  CAS  Google Scholar 

  • Zhu J, Winans SC (1998) Activity of the quorum-sensing regulator TraR of Agrobacterium tumefaciens is inhibited by a truncated, dominant defective TraR-like protein. Mol Microbiol 27:289–297

    PubMed  CAS  Google Scholar 

  • Zhu J, Oger PM, Schrammeijer B, Hooykaas PJ, Farrand SK, Winans SC (2000) The bases of crown gall tumorigenesis. J Bacteriol 182:3885–3895

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely wish to thank Ernö Szegedi, Léon Otten, and João Setubal for helpful discussions and information, Michael Hynes for sharing his expertise in rhizobial plasmids and Victor González for unpublished data. This work was supported by grants 70/4/7809 from the NKUA Research Committee to KMP and IN205808 (PAPIIT-UNAM) and 46738-Q (CONACyT) to MAC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine M. Pappas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pappas, K.M., Cevallos, M.A. (2011). Plasmids of the Rhizobiaceae and Their Role in Interbacterial and Transkingdom Interactions. In: Witzany, G. (eds) Biocommunication in Soil Microorganisms. Soil Biology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14512-4_12

Download citation

Publish with us

Policies and ethics