Air Traffic Collision Avoidance



Aircraft collision avoidance manoeuvres are important and complex applications.Curved flight exhibits nontrivial continuous behaviour. In combination with the control choices during air traffic manoeuvres, this results in hybrid systems with challenging interactions of discrete and continuous dynamics. As a case study for demonstrating the scalability of logical analysis for hybrid systems with challenging dynamics, we analyse collision freedom of roundabout manoeuvres in air traffic control, where appropriate curved flight, good timing, and compatible manoeuvring are crucial for guaranteeing safe spatial separation of aircraft throughout their flight.We show that our DAL-based proof techniques can scale to curved flight manoeuvres required in aircraft control applications. Our logical analysis approach can be used successfully to verify collision avoidance of the tangential roundabout manoeuvre automatically, even for five aircraft. Moreover, we introduce a fully fly-able variant of the roundabout collision avoidance manoeuvre and verify safety properties by compositional verification in our calculus.


Angular Velocity Collision Avoidance Protected Zone Symmetry Reduction Linear Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 189.
    Lafferriere, G., Pappas, G.J., Yovine, S.: A new class of decidable hybrid systems. In: F.W. Vaandrager, J.H. van Schuppen (eds.) HSCC, LNCS, vol. 1569, pp. 137–151. Springer (1999). DOI 10.1007/3-540-48983-5_15Google Scholar
  2. 168.
    Hu, J., Prandini, M., Sastry, S.: Probabilistic safety analysis in three-dimensional aircraft flight. In: CDC, vol. 5, pp. 5335 – 5340 (2003). DOI 10.1109/CDC.2003.1272485Google Scholar
  3. 46.
    Bicchi, A., Pallottino, L.: On optimal cooperative conflict resolution for air traffic management systems. IEEE Trans. Intelligent Transportation Systems 1(4), 221–231 (2000)CrossRefGoogle Scholar
  4. 180.
    Koˇsecká, J., Tomlin, C., Pappas, G., Sastry, S.: 2-1/2D conflict resolution maneuvers for ATMS. In: CDC, vol. 3, pp. 2650–2655. Tampa, FL, USA (1998). DOI 10.1109/CDC.1998. 757853Google Scholar
  5. 222.
    Pallottino, L., Scordio, V.G., Frazzoli, E., Bicchi, A.: Decentralized cooperative policy for conflict resolution in multi-vehicle systems. IEEE Trans. on Robotics 23(6), 1170–1183 (2007)CrossRefGoogle Scholar
  6. 167.
    Hu, J., Prandini, M., Sastry, S.: Optimal coordinated motions of multiple agents moving on a plane. SIAM Journal on Control and Optimization 42, 637–668 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 129.
    Galdino, A.L., Muñoz, C., Ayala-Rincón, M.: Formal verification of an optimal air traffic conflict resolution and recovery algorithm. In: D. Leivant, R. de Queiroz (eds.) WoLLIC, LNCS, vol. 4576, pp. 177–188. Springer (2007)Google Scholar
  8. 203.
    Massink, M., Francesco, N.D.: Modelling free flight with collision avoidance. In: Andler and Offutt [16], pp. 270–280. DOI 10.1109/ICECCS.2001.930186Google Scholar
  9. 92.
    Damm,W., Pinto, G., Ratschan, S.: Guaranteed termination in the verification of LTL properties of non-linear robust discrete time hybrid systems. In: Peled and Tsay [226], pp. 99–113. DOI 10.1007/11562948_10Google Scholar
  10. 164.
    Hoffmann, G.M., Huang, H., Waslander, S.L., Tomlin, C.J.: Quadrotor helicopter flight dynamics and control: Theory and experiment. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference. Hilton Head, SC (2007). AIAA Paper Number 2007-6461Google Scholar
  11. 296.
    Umeno, S., Lynch, N.A.: Safety verification of an aircraft landing protocol: A refinement approach. In: Bemporad et al. [41], pp. 557–572. DOI 10.1007/978-3-540-71493-4_43Google Scholar
  12. 196.
    Livadas, C., Lygeros, J., Lynch, N.A.: High-level modeling and analysis of TCAS. Proc. IEEE – Special Issue on Hybrid Systems: Theory & Applications 88(7), 926–947 (2000)Google Scholar
  13. 293.
    Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management: a study in multi-agent hybrid systems. IEEE T. Automat. Contr. 43(4), 509–521 (1998). DOI 10.1109/9.664154zbMATHCrossRefMathSciNetGoogle Scholar
  14. 216.
    Muñoz, C., Carreño, V., Dowek, G., Butler, R.W.: Formal verification of conflict detection algorithms. STTT 4(3), 371–380 (2003). DOI 10.1007/s10009-002-0084-3Google Scholar
  15. 156.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE Computer Society, Los Alamitos (1996)Google Scholar
  16. 171.
    Hwang, I., Kim, J., Tomlin, C.: Protocol-based conflict resolution for air traffic control. Air Traffic Control Quarterly 15(1), 1–34 (2007)Google Scholar
  17. 104.
    Dowek, G., Muñoz, C., Carreño, V.A.: Provably safe coordinated strategy for distributed conflict resolution. In: Proceedings of the AIAA Guidance Navigation, and Control Conference and Exhibit 2005, AIAA-2005-6047 (2005)Google Scholar
  18. 43.
    BFU: Investigation report. Tech. Rep. AX001-1-2/02, German Federal Bureau of Aircraft Accidents Investigation (2004)Google Scholar
  19. 295.
    Umeno, S., Lynch, N.A.: Proving safety properties of an aircraft landing protocol using I/O automata and the PVS theorem prover: A case study. In: J. Misra, T. Nipkow, E. Sekerinski (eds.) FM, LNCS, vol. 4085, pp. 64–80. Springer (2006). DOI 10.1007/11813040_5Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations