Computing Differential Invariants as Fixed Points



We introduce a fixed-point algorithm for verifying safety properties of hybrid systems with differential equations whose right-hand sides are polynomials in the state variables. In order to verify nontrivial systems without solving their differential equations and without numerical errors, we use differential induction as a continuous generalisation of induction, for which our algorithm computes the required differential invariants. As a means for combining local differential invariants into global system invariants in a sound way, our fixed-point algorithm works with differential dynamic logic as a compositional verification logic for hybrid systems. To improve the verification power, we further introduce a saturation procedure that refines the system dynamics successively by differential cuts with differential invariants until the property becomes provable. By complementing our symbolic verification algorithm with a robust version of numerical falsification, we obtain a fast and sound verification procedure. We verify roundabout manoeuvres in air traffic control and collision avoidance in train control.


Hybrid System Hybrid Automaton Differential Invariant Hybrid Program Differential Induction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 81.
    Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991). DOI 10.1016/S0747-7171(08)80152-6zbMATHCrossRefMathSciNetGoogle Scholar
  2. 269.
    Rodríguez-Carbonell, E., Tiwari, A.: Generating polynomial invariants for hybrid systems. In: Morari and Thiele [212], pp. 590–605. DOI 10.1007/b106766Google Scholar
  3. 15.
    Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimination. In: M.D.D. Benedetto, A.L. Sangiovanni-Vincentelli (eds.) HSCC, LNCS, vol. 2034, pp. 63–76. Springer (2001). DOI 10.1007/3-540-45351-2_9Google Scholar
  4. 102.
    Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In: Bemporad et al. [41], pp. 174–189. DOI 10.1007/978-3-540-71493-4_16Google Scholar
  5. 251.
    Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur and Pappas [14], pp. 477–492. DOI 10.1007/b96398Google Scholar
  6. 235.
    Platzer, A.: Differential dynamic logic for hybrid systems. Journal of Automated Reasoning 41(2), 143–189 (2008). DOI 10.1007/s10817-008-9103-8zbMATHCrossRefMathSciNetGoogle Scholar
  7. 203.
    Massink, M., Francesco, N.D.: Modelling free flight with collision avoidance. In: Andler and Offutt [16], pp. 270–280. DOI 10.1109/ICECCS.2001.930186Google Scholar
  8. 237.
    Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. Journal of Logic and Computation 20(1), 309–352 (2010). DOI 10.1093/logcom/exn070. Advance Access published on November 18, 2008zbMATHCrossRefMathSciNetGoogle Scholar
  9. 92.
    Damm,W., Pinto, G., Ratschan, S.: Guaranteed termination in the verification of LTL properties of non-linear robust discrete time hybrid systems. In: Peled and Tsay [226], pp. 99–113. DOI 10.1007/11562948_10Google Scholar
  10. 73.
    Clarke, E.M.: Program invariants as fixedpoints. Computing 21(4), 273–294 (1979). DOI 10.1007/BF02248730zbMATHCrossRefGoogle Scholar
  11. 231.
    Platzer, A.: Differential dynamic logic for verifying parametric hybrid systems. In: N. Olivetti (ed.) TABLEAUX, LNCS, vol. 4548, pp. 216–232. Springer (2007). DOI 10.1007/978-3-540-73099-6_17Google Scholar
  12. 267.
    Rodríguez-Carbonell, E., Kapur, D.: Automatic generation of polynomial invariants of bounded degree using abstract interpretation. Sci. Comput. Program. 64(1), 54–75 (2007). DOI 10.1016/j.scico.2006.03.003zbMATHCrossRefGoogle Scholar
  13. 293.
    Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management: a study in multi-agent hybrid systems. IEEE T. Automat. Contr. 43(4), 509–521 (1998). DOI 10.1109/9.664154zbMATHCrossRefMathSciNetGoogle Scholar
  14. 242.
    Platzer, A., Quesel, J.D.: KeYmaera: A hybrid theorem prover for hybrid systems. In: Armando et al. [18], pp. 171–178. DOI 10.1007/978-3-540-71070-7_15Google Scholar
  15. 156.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE Computer Society, Los Alamitos (1996)Google Scholar
  16. 171.
    Hwang, I., Kim, J., Tomlin, C.: Protocol-based conflict resolution for air traffic control. Air Traffic Control Quarterly 15(1), 1–34 (2007)Google Scholar
  17. 228.
    Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.: Algorithmic algebraic model checking I: Challenges from systems biology. In: Etessami and Rajamani [118], pp. 5–19. DOI 10.1007/11513988_3Google Scholar
  18. 202.
    Mansfield, E.L.: Differential Gröbner bases. Ph.D. thesis, University of Sydney (1991)Google Scholar
  19. 104.
    Dowek, G., Muñoz, C., Carreño, V.A.: Provably safe coordinated strategy for distributed conflict resolution. In: Proceedings of the AIAA Guidance Navigation, and Control Conference and Exhibit 2005, AIAA-2005-6047 (2005)Google Scholar
  20. 21.
    Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using conservative approximation. In: Maler and Pnueli [200], pp. 20–35. DOI 10.1007/3-540-36580-X_5Google Scholar
  21. 125.
    Fränzle, M.: Analysis of hybrid systems: An ounce of realism can save an infinity of states. In: J. Flum, M. Rodr´ıguez-Artalejo (eds.) CSL, LNCS, vol. 1683, pp. 126–140. Springer (1999)Google Scholar
  22. 192.
    Lanotte, R., Tini, S.: Taylor approximation for hybrid systems. In: Morari and Thiele [212], pp. 402–416. DOI 10.1007/b106766Google Scholar
  23. 268.
    Rodríguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in simple loops. J. Symb. Comput. 42(4), 443–476 (2007). DOI 10.1016/j.jsc.2007.01.002zbMATHCrossRefGoogle Scholar
  24. 224.
    Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2), 293–320 (2003). DOI 10.1007/s10107-003-0387-5zbMATHCrossRefMathSciNetGoogle Scholar
  25. 252.
    Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic safety verification using barrier certificates. IEEE T. Automat. Contr. 52(8), 1415–1429 (2007). DOI 10.1109/TAC.2007.902736CrossRefMathSciNetGoogle Scholar
  26. 266.
    Rodríguez-Carbonell, E., Kapur, D.: An abstract interpretation approach for automatic generation of polynomial invariants. In: R. Giacobazzi (ed.) SAS, Lecture Notes in Computer Science, vol. 3148, pp. 280–295. Springer (2004). DOI 10.1007/b99688Google Scholar
  27. 238.
    Platzer, A., Clarke, E.M.: The image computation problem in hybrid systems model checking. In: Bemporad et al. [41], pp. 473–486. DOI 10.1007/978-3-540-71493-4_37Google Scholar
  28. 274.
    Sankaranarayanan, S., Sipma, H., Manna, Z.: Constructing invariants for hybrid systems. In: Alur and Pappas [14], pp. 539–554. DOI 10.1007/b96398Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations