Deduction Modulo Real Algebra and Computer Algebra



We show how deductive, real algebraic, and computer algebraic methods can be combined for verifying hybrid systems in an automated theorem proving approach. In particular, we highlight the interaction of deductive and algebraic reasoning that is used for handling the joint discrete and continuous behaviour of hybrid systems. Systematically, we derive a canonical tableau procedure modulo from the calculus of differential dynamic logic. We delineate the nondeterminisms in the tableau procedure carefully and analyse their practical impact in the presence of computationally expensive handling of real algebraic constraints. Based on experience with larger case studies, we analyse proof strategies for dealing with the practical challenges for integrated algebraic and deductive verification of hybrid systems. To overcome the complexity pitfalls of integrating real arithmetic, we propose the iterative background closure and iterative inflation order strategies, with which we achieve substantial computational improvements.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 81.
    Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991). DOI 10.1016/S0747-7171(08)80152-6zbMATHCrossRefMathSciNetGoogle Scholar
  2. 256.
    Quesel, J.D.: A theorem prover for differential dynamic logic. Master’s thesis, University of Oldenburg, Department of Computing Science. Correct System Design Group (2007)Google Scholar
  3. 60.
    Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and cylindrical algebraic decomposition. In: D. Wang (ed.) ISSAC, pp. 54–60. ACM (2007). DOI 10.1145/1277548.1277557Google Scholar
  4. 198.
    Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J. 36(5), 450– 462 (1993). DOI 10.1093/comjnl/36.5.450zbMATHCrossRefMathSciNetGoogle Scholar
  5. 273.
    Rümmer, P.: A sequent calculus for integer arithmetic with counterexample generation. In: B. Beckert (ed.) VERIFY’07 at CADE, Bremen, Germany, CEUR Workshop Proceedings, vol. 259, pp. 179–194. (2007)Google Scholar
  6. 290.
    Tinelli, C.: Cooperation of background reasoners in theory reasoning by residue sharing. J. Autom. Reasoning 30(1), 1–31 (2003). DOI 10.1023/A:1022587501759zbMATHCrossRefMathSciNetGoogle Scholar
  7. 141.
    Grigoriev, D.: Complexity of deciding Tarski algebra. J. Symb. Comput. 5(1/2), 65–108 (1988). DOI 10.1016/S0747-7171(88)80006-3CrossRefGoogle Scholar
  8. 134.
    Giese, M.: Incremental closure of free variable tableaux. In: Goré et al. [139], pp. 545–560. DOI 10.1007/3-540-45744-5_46Google Scholar
  9. 63.
    Buchberger, B., Jebelean, T., Kriftner, F., Marin, M., Tomuta, E., Vasaru, D.: A survey of the Theorema project. In: ISSAC, pp. 384–391 (1997)Google Scholar
  10. 230.
    Platzer, A.: Combining deduction and algebraic constraints for hybrid system analysis. In: B. Beckert (ed.) VERIFY’07 at CADE, Bremen, Germany, CEUR Workshop Proceedings, vol. 259, pp. 164–178. (2007)Google Scholar
  11. 80.
    Collins, G.E.: Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: H. Barkhage (ed.) Automata Theory and Formal Languages, LNCS, vol. 33, pp. 134–183. Springer (1975). DOI 10.1007/3-540-07407-4_17Google Scholar
  12. 259.
    Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals, part II: The general decision problem. Preliminaries for quantifier elimination. J. Symb. Comput. 13(3), 301–328 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 122.
    Fitting, M.: First-Order Logic and Automated Theorem Proving, 2 edn. Springer, New York (1996)zbMATHGoogle Scholar
  14. 201.
    Manna, Z., Sipma, H.: Deductive verification of hybrid systems using STeP. In: T.A. Henzinger, S. Sastry (eds.) HSCC, LNCS, vol. 1386, pp. 305–318. Springer (1998). DOI 10.1007/3-540-64358-3_47Google Scholar
  15. 288.
    Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2 edn. University of California Press, Berkeley (1951)zbMATHGoogle Scholar
  16. 3.
    Adams, A., Dunstan, M., Gottliebsen, H., Kelsey, T., Martin, U., Owre, S.: Computer algebra meets automated theorem proving: Integrating Maple and PVS. In: R.J. Boulton, P.B. Jackson (eds.) TPHOLs, LNCS, vol. 2152, pp. 27–42. Springer (2001). DOI 10.1007/ 3-540-44755-5_4Google Scholar
  17. 263.
    Risler, J.J.: Some aspects of complexity in real algebraic geometry. J. Symb. Comput. 5(1/2), 109–119 (1988). DOI 10.1016/S0747-7171(88)80007-5Google Scholar
  18. 103.
    Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. Reasoning 31(1), 33–72 (2003). DOI 10.1023/A:1027357912519zbMATHCrossRefMathSciNetGoogle Scholar
  19. 94.
    Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symb. Comput. 5(1/2), 29–35 (1988). DOI 10.1016/S0747-7171(88)80004-XzbMATHCrossRefMathSciNetGoogle Scholar
  20. 303.
    Wolfram Research, Inc., Champaign, IL: Mathematica, version 5.2 edn. (2005).
  21. 299.
    Weispfenning, V.: The complexity of linear problems in fields. J. Symb. Comput. 5(1/2), 3–27 (1988). DOI 10.1016/S0747-7171(88)80003-8zbMATHCrossRefMathSciNetGoogle Scholar
  22. 32.
    Beckert, B.: Equality and other theories. In: M. D’Agostino, D. Gabbay, R. Hähnle, J. Posegga (eds.) Handbook of Tableau Methods. Kluwer (1999)Google Scholar
  23. 28.
    Bauer, A., Clarke, E.M., Zhao, X.: Analytica—an experiment in combining theorem proving and symbolic computation. J. Autom. Reasoning 21(3), 295–325 (1998). DOI 10.1023/A: 1006079212546zbMATHCrossRefMathSciNetGoogle Scholar
  24. 1.
    Ábrahám-Mumm, E., Steffen, M., Hannemann, U.: Verification of hybrid systems: Formalization and proof rules in PVS. In: Andler and Offutt [16], pp. 48–57. DOI 10.1109/ICECCS. 2001.930163Google Scholar
  25. 83.
    Collins, G.E., Johnson, J.R., Krandick, W.: Interval arithmetic in cylindrical algebraic decomposition. J. Symb. Comput. 34(2), 145–157 (2002). DOI 10.1006/jsco.2002.0547zbMATHCrossRefMathSciNetGoogle Scholar
  26. 258.
    Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals, part I: Introduction. Preliminaries. The geometry of semi-algebraic sets. The decision problem for the existential theory of the reals. J. Symb. Comput. 13(3), 255–300 (1992)zbMATHMathSciNetGoogle Scholar
  27. 260.
    Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals, part III: Quantifier elimination. J. Symb. Comput. 13(3), 329–352 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 142.
    Grigoriev, D., Vorobjov, N.: Solving systems of polynomial inequalities in subexponential time. J. Symb. Comput. 5(1/2), 37–64 (1988). DOI 10.1016/S0747-7171(88)80005-1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations