Differential Temporal Dynamic Logic dTL



We combine first-order dynamic logic for reasoning about the possible behaviour of hybrid systems with temporal logic for reasoning about the temporal behaviour during their operation. Our logic supports verification of hybrid programs with first-order definable flows and provides a uniform treatment of discrete and continuous evolution. For our combined logic, we generalise the semantics of dynamic modalities to refer to hybrid traces instead of final states. Further, we prove that this gives a conservative extension of our dynamic logic for hybrid systems. On this basis, we provide a modular verification calculus that reduces correctness of temporal behaviour of hybrid systems to nontemporal reasoning, and prove that we obtain a complete axiomatisation relative to the nontemporal base logic. Using this calculus, we analyse safety invariants in a train control system and symbolically synthesise parametric safety constraints.


Hybrid System Trace Formula Sequent Calculus Dynamic Logic State Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 96.
    Davoren, J.M., Coulthard, V., Markey, N., Moor, T.: Non-deterministic temporal logics for general flow systems. In: Alur and Pappas [14], pp. 280–295. DOI 10.1007/b96398Google Scholar
  2. 97.
    Davoren, J.M., Nerode, A.: Logics for hybrid systems. IEEE 88(7), 985–1010 (2000). DOI 10.1109/5.871305CrossRefGoogle Scholar
  3. 6.
    Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for real-time systems. In: Mitchell [210], pp. 414–425Google Scholar
  4. 89.
    Damm, W., Hungar, H., Olderog, E.R.: On the verification of cooperating traffic agents. In: F.S. de Boer, M.M. Bonsangue, S. Graf, W.P. de Roever (eds.) FMCO, LNCS, vol. 3188, pp. 77–110. Springer (2003). DOI 10.1007/b100112Google Scholar
  5. 254.
    Pratt, V.R.: Process logic. In: POPL, pp. 93–100 (1979). DOI 10.1145/567752.567761Google Scholar
  6. 115.
    Emerson, E.A., Halpern, J.Y.: “Sometimes” and “Not Never” revisited: on branching versus linear time temporal logic. J. ACM 33(1), 151–178 (1986). DOI 10.1145/4904.4999zbMATHCrossRefMathSciNetGoogle Scholar
  7. 78.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge, MA, USA (1999)Google Scholar
  8. 247.
    Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE (1977)Google Scholar
  9. 156.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE Computer Society, Los Alamitos (1996)Google Scholar
  10. 149.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  11. 248.
    Pnueli, A., Kesten, Y.: A deductive proof system for CTL*. In: L. Brim, P. Jancar, M. Kretínský, A. Kucera (eds.) CONCUR, LNCS, vol. 2421, pp. 24–40. Springer (2002). DOI 10.1007/3-540-45694-5_2Google Scholar
  12. 261.
    Reynolds, M.: An axiomatization of PCTL*. Inf. Comput. 201(1), 72–119 (2005). DOI 10.1016/j.ic.2005.03.005zbMATHCrossRefMathSciNetGoogle Scholar
  13. 159.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. In: LICS, pp. 394–406. IEEE Computer Society (1992). DOI 10.1006/inco.1994. 1045Google Scholar
  14. 114.
    Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize synchronization skeletons. Sci. Comput. Program. 2(3), 241–266 (1982)zbMATHCrossRefGoogle Scholar
  15. 217.
    Mysore, V., Piazza, C., Mishra, B.: Algorithmic algebraic model checking II: Decidability of semi-algebraic model checking and its applications to systems biology. In: Peled and Tsay [226], pp. 217–233. DOI 10.1007/11562948_18Google Scholar
  16. 90.
    Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating traffic agents. International Journal of Control 79(5), 395–421 (2006). DOI 10.1080/00207170600587531zbMATHCrossRefMathSciNetGoogle Scholar
  17. 38.
    Beckert, B., Schlager, S.: A sequent calculus for first-order dynamic logic with trace modalities. In: Goré et al. [139], pp. 626–641. DOI 10.1007/3-540-45744-5_51Google Scholar
  18. 284.
    Stirling, C.: Modal and temporal logics. In: Handbook of Logic in Computer Science (vol. 2): Background: Computational Structures, pp. 477–563. Oxford University Press, Inc., New York, NY, USA (1992)Google Scholar
  19. 119.
    Faber, J., Meyer, R.: Model checking data-dependent real-time properties of the European Train Control System. In: FMCAD, pp. 76–77. IEEE Computer Society Press (2006). DOI 10.1109/FMCAD.2006.21Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations