Differential-Algebraic Dynamic Logic DAL



We generalise dynamic logic to a logic for differential-algebraic programs, i.e., discrete programs augmented with first-order differential-algebraic formulas as continuous evolution constraints in addition to first-order discrete jump formulas. These programs characterise interacting discrete and continuous dynamics of hybrid systems elegantly and uniformly, including systems with disturbance and differential-algebraic equations. For our logic, we introduce a calculus over real arithmetic with discrete induction and a new differential induction with which differential-algebraic programs can be verified by exploiting their differential constraints algebraically without having to solve them.We develop the theory of differential induction and differential refinement and analyse their deductive power. As an example, we present parametric tangential roundabout manoeuvres in air traffic control and prove collision avoidance in our calculus.


Differential Inequality Disjunctive Normal Form Differential Invariant Proof Rule Hybrid Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 269.
    Rodríguez-Carbonell, E., Tiwari, A.: Generating polynomial invariants for hybrid systems. In: Morari and Thiele [212], pp. 590–605. DOI 10.1007/b106766Google Scholar
  2. 97.
    Davoren, J.M., Nerode, A.: Logics for hybrid systems. IEEE 88(7), 985–1010 (2000). DOI 10.1109/5.871305CrossRefGoogle Scholar
  3. 129.
    Galdino, A.L., Muñoz, C., Ayala-Rincón, M.: Formal verification of an optimal air traffic conflict resolution and recovery algorithm. In: D. Leivant, R. de Queiroz (eds.) WoLLIC, LNCS, vol. 4576, pp. 177–188. Springer (2007)Google Scholar
  4. 145.
    Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Gupta and Malik [146], pp. 190–203. DOI 10.1007/978-3-540-70545-1Google Scholar
  5. 235.
    Platzer, A.: Differential dynamic logic for hybrid systems. Journal of Automated Reasoning 41(2), 143–189 (2008). DOI 10.1007/s10817-008-9103-8zbMATHCrossRefMathSciNetGoogle Scholar
  6. 187.
    Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations: Analysis and Numerical Solution. European Mathematical Society (2006)Google Scholar
  7. 91.
    Damm, W., Mikschl, A., Oehlerking, J., Olderog, E.R., Pang, J., Platzer, A., Segelken, M., Wirtz, B.: Automating verification of cooperation, control, and design in traffic applications. In: C.B. Jones, Z. Liu, J. Woodcock (eds.) Formal Methods and Hybrid Real-Time Systems, LNCS, vol. 4700, pp. 115–169. Springer (2007). DOI 10.1007/978-3-540-75221-9_6Google Scholar
  8. 137.
    Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Mon. hefte Math. Phys. 38, 173–198 (1931). DOI 10.1007/BF01700692CrossRefGoogle Scholar
  9. 37.
    Beckert, B., Platzer, A.: Dynamic logic with non-rigid functions: A basis for object-oriented program verification. In: U. Furbach, N. Shankar (eds.) IJCAR, LNCS, vol. 4130, pp. 266– 280. Springer (2006). DOI 10.1007/11814771_23Google Scholar
  10. 270.
    Rönkkö, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theor. Comput. Sci. 290(1), 937–973 (2003)zbMATHCrossRefGoogle Scholar
  11. 196.
    Livadas, C., Lygeros, J., Lynch, N.A.: High-level modeling and analysis of TCAS. Proc. IEEE – Special Issue on Hybrid Systems: Theory & Applications 88(7), 926–947 (2000)Google Scholar
  12. 92.
    Damm,W., Pinto, G., Ratschan, S.: Guaranteed termination in the verification of LTL properties of non-linear robust discrete time hybrid systems. In: Peled and Tsay [226], pp. 99–113. DOI 10.1007/11562948_10Google Scholar
  13. 293.
    Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management: a study in multi-agent hybrid systems. IEEE T. Automat. Contr. 43(4), 509–521 (1998). DOI 10.1109/9.664154zbMATHCrossRefMathSciNetGoogle Scholar
  14. 288.
    Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2 edn. University of California Press, Berkeley (1951)zbMATHGoogle Scholar
  15. 123.
    Fitting, M., Mendelsohn, R.L.: First-OrderModal Logic. Kluwer, Norwell, MA, USA (1999)Google Scholar
  16. 156.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE Computer Society, Los Alamitos (1996)Google Scholar
  17. 132.
    Gear, C.W.: Differential-algebraic equations index transformations. SIAM J. Sci. Stat. Comput. 9(1), 39–47 (1988). DOI 10.1137/0909004zbMATHCrossRefMathSciNetGoogle Scholar
  18. 171.
    Hwang, I., Kim, J., Tomlin, C.: Protocol-based conflict resolution for air traffic control. Air Traffic Control Quarterly 15(1), 1–34 (2007)Google Scholar
  19. 149.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  20. 125.
    Fränzle, M.: Analysis of hybrid systems: An ounce of realism can save an infinity of states. In: J. Flum, M. Rodr´ıguez-Artalejo (eds.) CSL, LNCS, vol. 1683, pp. 126–140. Springer (1999)Google Scholar
  21. 104.
    Dowek, G., Muñoz, C., Carreño, V.A.: Provably safe coordinated strategy for distributed conflict resolution. In: Proceedings of the AIAA Guidance Navigation, and Control Conference and Exhibit 2005, AIAA-2005-6047 (2005)Google Scholar
  22. 85.
    Collins, P., Lygeros, J.: Computability of finite-time reachable sets for hybrid systems. In: CDC-ECC’05, pp. 4688– 4693. IEEE (2005)Google Scholar
  23. 233.
    Platzer, A.: A temporal dynamic logic for verifying hybrid system invariants. In: S.N. Art¨emov, A. Nerode (eds.) LFCS, LNCS, vol. 4514, pp. 457–471. Springer (2007). DOI 10.1007/978-3-540-72734-7_32Google Scholar
  24. 252.
    Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic safety verification using barrier certificates. IEEE T. Automat. Contr. 52(8), 1415–1429 (2007). DOI 10.1109/TAC.2007.902736CrossRefMathSciNetGoogle Scholar
  25. 238.
    Platzer, A., Clarke, E.M.: The image computation problem in hybrid systems model checking. In: Bemporad et al. [41], pp. 473–486. DOI 10.1007/978-3-540-71493-4_37Google Scholar
  26. 306.
    Zhou, C., Ravn, A.P., Hansen, M.R.: An extended duration calculus for hybrid real-time systems. In: Grossman et al. [144], pp. 36–59Google Scholar
  27. 81.
    Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991). DOI 10.1016/S0747-7171(08)80152-6zbMATHCrossRefMathSciNetGoogle Scholar
  28. 290.
    Tinelli, C.: Cooperation of background reasoners in theory reasoning by residue sharing. J. Autom. Reasoning 30(1), 1–31 (2003). DOI 10.1023/A:1022587501759zbMATHCrossRefMathSciNetGoogle Scholar
  29. 251.
    Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur and Pappas [14], pp. 477–492. DOI 10.1007/b96398Google Scholar
  30. 250.
    Pour-El, M.B., Richards, I.: A computable ordinary differential equation which possesses no computable solution. Annals of Mathematical Logic 17, 61–90 (1979). DOI 10.1016/0003-4843(79)90021-4zbMATHCrossRefMathSciNetGoogle Scholar
  31. 9.
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems. In: Grossman et al. [144], pp. 209–229Google Scholar
  32. 203.
    Massink, M., Francesco, N.D.: Modelling free flight with collision avoidance. In: Andler and Offutt [16], pp. 270–280. DOI 10.1109/ICECCS.2001.930186Google Scholar
  33. 122.
    Fitting, M.: First-Order Logic and Automated Theorem Proving, 2 edn. Springer, New York (1996)zbMATHGoogle Scholar
  34. 176.
    Johansson, K.H., Sastry, S., Zhang, J., Lygeros, J.: Zeno hybrid systems. Int. J. Robust and Nonlinear Control 11, 435–451 (2001). DOI 10.1002/rnc.592zbMATHCrossRefMathSciNetGoogle Scholar
  35. 55.
    Branicky, M.S.: General hybrid dynamical systems: Modeling, analysis, and control. In: Alur et al. [12], pp. 186–200. DOI 10.1007/BFb0020945Google Scholar
  36. 279.
    Sibirsky, K.S.: Introduction to Topological Dynamics. Noordhoff, Leyden (1975)Google Scholar
  37. 231.
    Platzer, A.: Differential dynamic logic for verifying parametric hybrid systems. In: N. Olivetti (ed.) TABLEAUX, LNCS, vol. 4548, pp. 216–232. Springer (2007). DOI 10.1007/978-3-540-73099-6_17Google Scholar
  38. 242.
    Platzer, A., Quesel, J.D.: KeYmaera: A hybrid theorem prover for hybrid systems. In: Armando et al. [18], pp. 171–178. DOI 10.1007/978-3-540-71070-7_15Google Scholar
  39. 153.
    Hartman, P.: Ordinary Differential Equations. John Wiley (1964)Google Scholar
  40. 228.
    Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.: Algorithmic algebraic model checking I: Challenges from systems biology. In: Etessami and Rajamani [118], pp. 5–19. DOI 10.1007/11513988_3Google Scholar
  41. 94.
    Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symb. Comput. 5(1/2), 29–35 (1988). DOI 10.1016/S0747-7171(88)80004-XzbMATHCrossRefMathSciNetGoogle Scholar
  42. 103.
    Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. Reasoning 31(1), 33–72 (2003). DOI 10.1023/A:1027357912519zbMATHCrossRefMathSciNetGoogle Scholar
  43. 21.
    Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using conservative approximation. In: Maler and Pnueli [200], pp. 20–35. DOI 10.1007/3-540-36580-X_5Google Scholar
  44. 297.
    Walter, W.: Ordinary Differential Equations. Springer (1998)Google Scholar
  45. 77.
    Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003). DOI 10.1142/S012905410300190XzbMATHCrossRefMathSciNetGoogle Scholar
  46. 182.
    Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3), 427–443 (1997). DOI 10.1145/256167.256195CrossRefGoogle Scholar
  47. 179.
    Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York (1972)Google Scholar
  48. 274.
    Sankaranarayanan, S., Sipma, H., Manna, Z.: Constructing invariants for hybrid systems. In: Alur and Pappas [14], pp. 539–554. DOI 10.1007/b96398Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations