Skip to main content

Trehalolipids

  • Chapter
  • First Online:
Book cover Biosurfactants

Part of the book series: Microbiology Monographs ((MICROMONO,volume 20))

Abstract

Trehalose-containing glycolipids are mainly produced by Gram-positive, high GC content bacteria of Actinomycetales. Their structures are quite diverse in hydrophobic moiety, varying from short simple to long complex fatty acids. Correspondingly, functions and physiochemical properties vary upon structures. From the view of practical use as a biosurfactant, the trehalose lipids from Rhodococcus and the genera other than Mycobacterium are of high potential in application. While, like other kinds of biosurfactants, their relative low productivity limits practical use. And yet, the biosynthesis mechanism of trehalose lipids has been less exploited and needs further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam A, Senn M, Vilkas E, Lederer E (1967) Spectrométrie de masse de glycolipides. Eur J Biochem 2:460–468

    Article  PubMed  CAS  Google Scholar 

  • Anderson RJ, Newman MS (1933) The chemistry of the lipids of tubercle bacilli: xxxiii. isolation of trehalose from the acetone-soluble fat of the human tubercle Bacillus. J Biol Chem 101:499–504

    CAS  Google Scholar 

  • Aranda FJ, Teruel JA, Espuny MJ, Marques A, Manresa A, Palacios-Lidon E, Ortiz A (2007) Domain formation by a Rhodococcus sp. biosurfactant trehalose lipid incorporated into phosphatidylcholine membranes. Biochim Biophys Acta 1768:2596–2604

    Article  PubMed  CAS  Google Scholar 

  • Ariza MA, Martin-Luengo F, Valero-Guillen PL (1994) A family of diacyltrehaloses isolated from Mycobacterium fortuitum. Microbiology 140(Pt 8):1989–1994

    Article  PubMed  CAS  Google Scholar 

  • Asselineau C, Asselineau J (1978) Trehalose-containing glycolipids. Prog Chem Fats Other Lipids 16:59–99

    Article  PubMed  CAS  Google Scholar 

  • Barry CE 3rd, Lee RE, Mdluli K, Sampson AE, Schroeder BG, Slayden RA, Yuan Y (1998) Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res 37:143–179

    Article  PubMed  CAS  Google Scholar 

  • Batrakov SG, Bv R, Koronelli TV, Bergelson LD (1981) Two novel types of trehalose lipids. Chem Phys Lipids 29:241–266

    Article  CAS  Google Scholar 

  • Berekaa MM, Steinbuchel A (2000) Microbial degradation of the multiply branched alkane 2, 6, 10, 15, 19, 23-hexamethyltetracosane (Squalane) by Mycobacterium fortuitum and Mycobacterium ratisbonense. Appl Environ Microbiol 66:4462–4467

    Article  PubMed  CAS  Google Scholar 

  • Besra GS, Bolton RC, McNeil MR, Ridell M, Simpson KE, Glushka J, van Halbeek H, Brennan PJ, Minnikin DE (1992) Structural elucidation of a novel family of acyltrehaloses from Mycobacterium tuberculosis. Biochemistry 31:9832–9837

    Article  PubMed  CAS  Google Scholar 

  • Campos-Garcia J, Caro AD, Najera R, Miller-Maier RM, Al-Tahhan RA, Soberon-Chavez G (1998) The Pseudomonas aeruginosa rhlG gene encodes an NADPH-dependent beta-ketoacyl reductase which is specifically involved in rhamnolipid synthesis. J Bacteriol 180:4442–4451

    PubMed  CAS  Google Scholar 

  • Churchill PF, Morgan AC, Kitchens E (2008) Characterization of a pyrene-degrading Mycobacterium sp. strain CH-2. J Environ Sci Health B 43:698–706

    Article  PubMed  CAS  Google Scholar 

  • Datta AK, Takayama K (1993) Isolation and purification of trehalose 6-mono- and 6, 6′-di-corynomycolates from Corynebacterium matruchotii. Structural characterization by 1H NMR. Carbohydr Res 245:151–158

    Article  PubMed  CAS  Google Scholar 

  • Desai AJ, Patel KM, Desai JD (1988) Emulsifier production by Pseudomonas fluorescens during the growth on hydrocarbons. Current Science Association, Bangalore

    Google Scholar 

  • Esch SW, Morton MD, Williams TD, Buller CS (1999) A novel trisaccharide glycolipid biosurfactant containing trehalose bears ester-linked hexanoate, succinate, and acyloxyacyl moieties: NMR and MS characterization of the underivatized structure. Carbohydr Res 319:112–123

    Article  PubMed  CAS  Google Scholar 

  • Espuny MJ, Egido S, Mercadé ME, Manresa A (1995) Characterization of trehalose tetraester produced by a waste lubricant oil degrader Rhodococcus sp. Toxicol Environ Chem 48:83–88

    Article  CAS  Google Scholar 

  • Espuny M, Egido S, Rodón I, Manresa A, Mercadé M (1996) Nutritional requirements of a biosurfactant producing strain Rhodococcus sp 51T7. Biotechnol Lett 18:521–526

    Article  CAS  Google Scholar 

  • Fujita Y, Naka T, McNeil MR, Yano I (2005) Intact molecular characterization of cord factor (trehalose 6, 6′-dimycolate) from nine species of mycobacteria by MALDI-TOF mass spectrometry. Microbiology 151:3403–3416

    Article  PubMed  CAS  Google Scholar 

  • Gautier N, Lopez Marin LM, Laneelle MA, Daffe M (1992) Structure of mycoside F, a family of trehalose-containing glycolipids of Mycobacterium fortuitum. FEMS Microbiol Lett 77:81–87

    Article  PubMed  CAS  Google Scholar 

  • Gesheva V, Stackebrandt E, Vasileva-Tonkova E (2010) Biosurfactant production by halotolerant Rhodococcus fascians from Casey Station, Wilkes Land, Antarctica. Cur Microbiol 61(2):112–117

    Google Scholar 

  • Guidry TV, Hunter RL Jr, Actor JK (2007) Mycobacterial glycolipid trehalose 6, 6′-dimycolate-induced hypersensitive granulomas: contribution of CD4+ lymphocytes. Microbiology 153:3360–3369

    Article  PubMed  CAS  Google Scholar 

  • Hallas LE, Vestal JR (1978) The growth of Mycobacterium convolutum on solid n-alkane substrates: effect on cellular lipid composition. Can J Microbiol 24:1197–1203

    Article  PubMed  CAS  Google Scholar 

  • Harland CW, Botyanszki Z, Rabuka D, Bertozzi CR, Parthasarathy R (2009) Synthetic trehalose glycolipids confer desiccation resistance to supported lipid monolayers. Langmuir 25:5193–5198

    Article  PubMed  CAS  Google Scholar 

  • Hunter RL, Olsen M, Jagannath C, Actor JK (2006) Trehalose 6, 6′-dimycolate and lipid in the pathogenesis of caseating granulomas of tuberculosis in mice. Am J Pathol 168:1249–1261

    Article  PubMed  CAS  Google Scholar 

  • Imasato H, Procopio J, Tabak M, Ioneda T (1990) Effect of low mole fraction of trehalose dicorynomycolate from Corynebacterium diphtheriae on water permeability and electrical capacitance of lipid bilayer membranes. Chem Phys Lipids 52:259–262

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa E, Ishikawa T, Morita YS, Toyonaga K, Yamada H, Takeuchi O, Kinoshita T, Akira S, Yoshikai Y, Yamasaki S (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206:2879–2888

    Article  PubMed  CAS  Google Scholar 

  • Isoda H, Shinmoto H, Matsumura M, Nakahara T (1995) Succinoyl trehalose lipid induced differentiation of human monocytoid leukemic cell line U937 into monocyte-macrophages. Cytotechnology 19:79–88

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Powalla M, Lang S, Wagner F, Lunsdorf H, Wray V (1990) Microbial glycolipid production under nitrogen limitation and resting cell conditions. J Biotechnol 13:257–266

    Article  PubMed  CAS  Google Scholar 

  • Kotani T, Kawashima Y, Yurimoto H, Kato N, Sakai Y (2006) Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7. J Biosci Bioeng 102:184–192

    Article  PubMed  CAS  Google Scholar 

  • Kretschmer A, Wagner F (1983) Characterization of biosynthetic intermediates of trehalose dicorynomycolates from Rhodococcus erythropolis grown on n-alkanes. Biochim Biophys Acta/Lipids Lipid Metabol 753:306–313

    Article  CAS  Google Scholar 

  • Kretschmer A, Bock H, Wagner F (1982) Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkanes. Appl Environ Microbiol 44:864–870

    PubMed  CAS  Google Scholar 

  • Laneelle MA, Asselineau J (1976) Glycolipids of Brevibacterium vitarumen. Biochim Biophys Acta 486:205–208

    PubMed  CAS  Google Scholar 

  • Lang S (1999) Production of microbial glycolipids. In: Bucke C (ed) Methods in Biotechnology, Vol. 10, Carbohydrate biotechnology protocols. Humana Press Inc., Totowa, NJ, pp 103–118

    Google Scholar 

  • Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Antonie Leeuwenhoek 74:59–70

    Article  PubMed  CAS  Google Scholar 

  • Marques AM, Pinazo A, Farfan M, Aranda FJ, Teruel JA, Ortiz A, Manresa A, Espuny MJ (2009) The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chem Phys Lipids 158:110–117

    Article  PubMed  CAS  Google Scholar 

  • Martin M, Bosch P, Parra JL, Espuny MJ, Virgili A (1991) Structure and bioconversion of trehalose lipids. Carbohydr Res 220:93–100

    Article  CAS  Google Scholar 

  • Mompon B, Federici C, Toubiana R, Lederer E (1978) Isolation and structural determination of a “cord-factor” (trehalose 6, 6′ dimycolate) from Mycobacterium smegmatis. Chem Phys Lipids 21:97–101

    Article  PubMed  CAS  Google Scholar 

  • Nakano MM, Magnuson R, Myers A, Curry J, Grossman AD, Zuber P (1991) srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J Bacteriol 173:1770–1778

    PubMed  CAS  Google Scholar 

  • Nakano MM, Corbell N, Besson J, Zuber P (1992) Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol Gen Genet 232:313–321

    PubMed  CAS  Google Scholar 

  • Niescher S, Wray V, Lang S, Kaschabek SR, Schlomann M (2006) Identification and structural characterisation of novel trehalose dinocardiomycolates from n-alkane-grown Rhodococcus opacus 1CP. Appl Microbiol Biotechnol 70:605–611

    Article  PubMed  CAS  Google Scholar 

  • Ochsner UA, Koch AK, Fiechter A, Reiser J (1994) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176:2044–2054

    PubMed  CAS  Google Scholar 

  • Ortiz A, Teruel JA, Espuny MJ, Marques A, Manresa A, Aranda FJ (2008) Interactions of a Rhodococcus sp. biosurfactant trehalose lipid with phosphatidylethanolamine membranes. Biochim Biophys Acta 1778:2806–2813

    Article  PubMed  CAS  Google Scholar 

  • Ortiz A, Teruel JA, Espuny MJ, Marques A, Manresa A, Aranda FJ (2009) Interactions of a bacterial biosurfactant trehalose lipid with phosphatidylserine membranes. Chem Phys Lipids 158:46–53

    Article  PubMed  CAS  Google Scholar 

  • Passeri A, Lang S, Wagner F, Wray V (1991) Marine biosurfactants, II. Production and characterization of an anionic trehalose tetraester from the marine bacterium Arthrobacter sp. EK 1. Z Naturforsch C 46:204–209

    PubMed  CAS  Google Scholar 

  • Peng F, Liu Z, Wang L, Shao Z (2007) An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J Appl Microbiol 102:1603–1611

    Article  PubMed  CAS  Google Scholar 

  • Philp JC, Kuyukina MS, Ivshina IB, Dunbar SA, Christofi N, Lang S, Wray V (2002) Alkanotrophic Rhodococcus ruber as a biosurfactant producer. Appl Microbiol Biotechnol 59:318–324

    Article  PubMed  CAS  Google Scholar 

  • Rapp P, Bock H, Wray V, Wagner F (1979) Formation, Isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis Grown on n-Alkanes. J Gen Microbiol 115:491–503

    CAS  Google Scholar 

  • Ristau E, Wagner F (1983) Formation of novel anionic trehalosetetraesters from Rhodococcus erythropolis under growth limiting conditions. Biotechnol Lett 5:95–100

    Article  CAS  Google Scholar 

  • Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618

    Article  PubMed  CAS  Google Scholar 

  • Ryll R, Kumazawa Y, Yano I (2001) Immunological properties of trehalose dimycolate (cord factor) and other mycolic acid-containing glycolipids – a review. Microbiol Immunol 45:801–811

    PubMed  CAS  Google Scholar 

  • Satpute SK, Banat IM, Dhakephalkar PK, Banpurkar AG, Chopade BA (2010) Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol Adv 28(4):436–450

    Article  PubMed  CAS  Google Scholar 

  • Schulz D, Passeri A, Schmidt M, Lang S, Wagner F, Wray V, Gunkel W (1991) Marine biosurfactants. I. Screening for biosurfactants among crude oil degrading marine microorganisms from the North Sea. Z Naturforsch C 46:197–203

    PubMed  CAS  Google Scholar 

  • Singer V, Finnerty WR (1990) Physiology of biosurfactant synthesis by Rhodococcus species H13-A. Can J Microbiol 36:741–745

    Article  PubMed  CAS  Google Scholar 

  • Singer V, Finnerty WR, Tunelid A (1990) Physical and chemical properties of a biosurfactant synthesized by Rhodococcus species H13-A. Can J Microbiol 36:746–750

    Article  PubMed  CAS  Google Scholar 

  • Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146

    Article  PubMed  CAS  Google Scholar 

  • Sudo T, Zhao X, Wakamatsu Y, Shibahara M, Nomura N, Nakahara T, Suzuki A, Kobayashi Y, Jin C, Murata T, Yokoyama KK (2000) Induction of the differentiation of human HL-60 promyelocytic leukemia cell line by succinoyl trehalose lipids. Cytotechnology 33:259–264

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Tanaka K, Matsubara J, Kimoshita S (1969) Trehalose lipid and α-branched-β-hydroxy fatty acid formed by bacteria grown on n-alkanes. Agric Biol Chem 33:1619–1627

    Article  CAS  Google Scholar 

  • Tokumoto Y, Nomura N, Uchiyama H, Imura T, Morita T, Fukuoka T, Kitamoto D (2009) Structural characterization and surface-active properties of a succinoyl trehalose lipid produced by Rhodococcus sp. SD-74. J Oleo Sci 58:97–102

    Article  PubMed  CAS  Google Scholar 

  • Tuleva B, Christova N, Cohen R, Stoev G, Stoineva I (2008) Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislaviensis strain. J Appl Microbiol 104:1703–1710

    Article  PubMed  CAS  Google Scholar 

  • Tuleva B, Christova N, Cohen R, Antonova D, Todorov T, Stoineva I (2009) Isolation and characterization of trehalose tetraester biosurfactants from a soil strain Micrococcus luteus BN56. Process Biochem 44:135–141

    Article  CAS  Google Scholar 

  • Uchida Y, Tsuchiya R, Chino M, Hirano J, Tabuchi T (1989) Extracellular accumulation of mono- and di-succinoyl trehalose lipids by a strain of Rhodococcus erythropolis grown on n-alkanes. Agric Biol Chem 53:757–763

    Article  CAS  Google Scholar 

  • Vila J, Grifoll M (2009) Actions of Mycobacterium sp. strain AP1 on the saturated- and aromatic-hydrocarbon fractions of fuel oil in a marine medium. Appl Environ Microbiol 75:6232–6239

    Article  PubMed  CAS  Google Scholar 

  • Vilkas E, Rojas A (1964) On the Lipids of Mycobacterium Fortuitum. Bull Soc Chim Biol (Paris) 46:689–701

    CAS  Google Scholar 

  • Watanabe R, Yoo YC, Hata K, Mitobe M, Koike Y, Nishizawa M, Garcia DM, Nobuchi Y, Imagawa H, Yamada H, Azuma I (1999) Inhibitory effect of trehalose dimycolate (TDM) and its stereoisometric derivatives, trehalose dicorynomycolates (TDCMs), with low toxicity on lung metastasis of tumour cells in mice. Vaccine 17:1484–1492

    Article  PubMed  CAS  Google Scholar 

  • Yakimov MM, Giuliano L, Bruni V, Scarfi S, Golyshin PN (1999) Characterization of Antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. New Microbiol 22:249–256

    PubMed  CAS  Google Scholar 

  • Zaragoza A, Aranda FJ, Espuny MJ, Teruel JA, Marques A, Manresa A, Ortiz A (2009) Mechanism of membrane permeabilization by a bacterial trehalose lipid biosurfactant produced by Rhodococcus sp. Langmuir 25:7892–7898

    Article  PubMed  CAS  Google Scholar 

  • Zaragoza A, Aranda FJ, Espuny MJ, Teruel JA, Marques A, Manresa A, Ortiz A (2010) Hemolytic activity of a bacterial trehalose lipid biosurfactant produced by Rhodococcus sp.: evidence for a colloid-osmotic mechanism. Langmuir 26(11):8567–8572

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongze Shao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shao, Z. (2011). Trehalolipids. In: Soberón-Chávez, G. (eds) Biosurfactants. Microbiology Monographs, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14490-5_5

Download citation

Publish with us

Policies and ethics