Skip to main content

Serrawettins and Other Surfactants Produced by Serratia

  • Chapter
  • First Online:
Book cover Biosurfactants

Part of the book series: Microbiology Monographs ((MICROMONO,volume 20))

Abstract

Serrawettins are nonionic biosurfactants produced by Serratia marcescens. Three molecular species, serrawettin W1, cyclo(d-3-hydroxydecanoyl-l-seryl)2; W2, d-3-hydroxydecanoyl-d-leucyl-l-seryl-l-threonyl-d-phenylalanyl-l-isoleucyl lactone; and W3, cyclodepsipeptide composed of five amino acids and one dodecanoic acid, have been reported. Serratia rubidaea produces rubiwettin R1, linked d-3-hydroxy fatty acids and RG1, β-glucopyranosyl linked d-3-hydroxy fatty acids. These biosurfactants are produced mainly at 30°C, but not at 37°C, and secreted through extracellular vesicles on solid media. The contribution of the biosurfactants to spreading growth in surface environments has been determined, and it is prominent under nutrient-poor conditions. Analyses of S. marcescens mutants revealed the involvement of three novel genes for serrawettin W1 production. The gene pswP encodes a phosphopantetheinyl transferase group enzyme, swrW encodes a unimodular synthetase belonging to the nonribosomal peptide synthetase (NRPS) family, and hexS encodes a LysR-type transcriptional regulator working as a downregulator of Serratia exolipids and some exoenzymes. Autoinducer-dependent serrawettin W2 production has been elucidated by the finding of SwrI/SwrR (homolog of LuxI/LuxR) and N-acyl homoserine lactones in the study on quorum-sensing controlled-swarming of S. marcescens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akit J, Cooper DG, Manninen KI, Zajic JE (1981) Investigation of potential biosurfactant production among phytopathogenic corynebacteria and related soil microbes. Curr Microbiol 6:145–150

    Article  CAS  Google Scholar 

  • Alberti L, Harshey RM (1990) Differentiation of Serratia marcescens 274 into swimmer and swarmer cells. J Bacteriol 172:4322–4328

    PubMed  CAS  Google Scholar 

  • Allison C, Hughes C (1991) Bacterial swarming: an example of prokaryotic differentiation and multicellular behaviour. Sci Prog 75:403–422

    PubMed  CAS  Google Scholar 

  • Bar-Ness R, Avrahamy N, Matsuyama T, Rosenberg M (1988) Increased cell surface hydrophobicity of a Serratia marcescens NS 38 mutant lacking wetting activity. J Bacteriol 170:4361–4364

    PubMed  CAS  Google Scholar 

  • Ben-Jacob E, Shochet O, Tenenbaum A, Cohen L, Czirók A, Vicsek T (1994) Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368:46–49

    Article  PubMed  CAS  Google Scholar 

  • Burger MM, Glaser L, Burton RM (1963) The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa. J Biol Chem 238:2595–2602

    PubMed  CAS  Google Scholar 

  • Calfee MW, Shelton JG, McCubrey JA, Pesci EC (2005) Solubility and bioactivity of the Pseudomonas quinolone signal are increased by a Pseudomonas aeruginosa-produced surfactant. Infect Immun 73:878–882

    Article  PubMed  CAS  Google Scholar 

  • Cartwright NJ (1955) Serratamic acid, a derivative of L-serine produced by organisms of the Serratia group. Biochem J 60:238–242

    PubMed  CAS  Google Scholar 

  • Chen BG, Turner L, Berg HC (2007) The wetting agent for swarming in Salmonella enterica serovar Typhimurium is not a surfactant. J Bacteriol 189:8750–8753

    Article  PubMed  CAS  Google Scholar 

  • Cosmina P, Rodriguez F, de Ferra F, Grandi G, Perego M, Venema G, van Sinderen D (1993) Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol 8:821–831

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Lewandowski Z (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  PubMed  CAS  Google Scholar 

  • Coulthurst SJ, Kurz CL, Salmond GPC (2004) luxS mutants of Serratia defective in autoinducer-2-dependent ‘quorum sensing’ show strain-dependent impacts on virulence and production of carbapenem and prodigiosin. Microbiology 150:1901–1910

    Article  PubMed  CAS  Google Scholar 

  • Coulthurst SJ, Williamson NR, Harris AK, Spring DR, Salmond GPC (2006) Metabolic and regulatory engineering of Serratia marcescens: mimicking phage-mediated horizontal acquisition of antibiotic biosynthesis and quorum-sensing capacities. Microbiology 152:1899–1911

    Article  PubMed  CAS  Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Genetic regulations of the biosynthesis of microbial surfactants: an overview. Biotechnol Genet Eng Rev 25:165–186

    Article  PubMed  CAS  Google Scholar 

  • Déziel E, Lépine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149:2005–2013

    Article  PubMed  Google Scholar 

  • Eberl L, Winson MK, Sternberg C, Stewart GSAB, Christiansen G, Chhabra SR, Bycroft B, Williams P, Molin S, Givskov M (1996) Involvement of N-acyl-L-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol 20:127–136

    Article  PubMed  CAS  Google Scholar 

  • Escobar-Díaz E, López-Martín EM, Hernández del Cerro M, Puig-Kroger A, Soto-Cerrato V, Montaner B, Giralt E, García-Marco JA, Pérez-Tomás R, Garcia-Pardo A (2005) AT514, a cyclic depsipeptide from Serratia marcescens, induces apoptosis of B-chronic lymphocytic leukemia cells: interference with the Akt/NF-κB survival pathway. Leukemia 19:572–579

    PubMed  Google Scholar 

  • Givskov M, Eberl L, Molin S (1997) Control of exoenzyme production, motility and cell differentiation in Serratia liquefaciens. FEMS Microbiol Lett 148:115–122

    Article  CAS  Google Scholar 

  • Guenzi E, Galli G, Grgurina I, Gross DC, Grandi G (1998) Characterization of the syringomycin synthetase gene cluster. J Biol Chem 273:32857–32863

    Article  PubMed  CAS  Google Scholar 

  • Harris AKP, Williamson NR, Slater H, Cox A, Abbasi S, Foulds I, Simonsen HT, Leeper FJ, Salmond GPC (2004) The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology 150:3547–3560

    Article  PubMed  CAS  Google Scholar 

  • Harshey RM (2003) Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57:249–273

    Article  PubMed  CAS  Google Scholar 

  • Harshey RM, Matsuyama T (1994) Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci USA 91:8631–8635

    Article  PubMed  CAS  Google Scholar 

  • Heurlier K, Williams F, Heeb S, Dormond C, Pessi G, Singer D, Cámara M, Williams P, Haas D (2004) Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol 186:2936–2945

    Article  PubMed  CAS  Google Scholar 

  • Hisatsuka KI, Nakahara T, Sano N, Yamada K (1971) Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric Biol Chem 35:686–692

    Article  Google Scholar 

  • Iliev B, Linden A, Kunz R, Heimgartner H (2006) 14-Membered cyclodepsipeptides with alternating β-hydroxy and α-amino acids by cyclodimerization. Tetrahedron 62:1079–1094

    Article  CAS  Google Scholar 

  • Jain DK, Collins-Thompson DL, Lee H, Trevors JT (1991) A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Meth 13:271–279

    Article  Google Scholar 

  • Köhler T, Curty LK, Barja F (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996

    Article  PubMed  Google Scholar 

  • Li H, Tanikawa T, Sato Y, Nakagawa Y, Matsuyama T (2005) Serratia marcescens gene required for surfactant serrawettin W1 production encodes putative aminolipid synthetase belonging to nonribosomal peptide synthetase family. Microbiol Immunol 49:303–310

    PubMed  CAS  Google Scholar 

  • Lindum PW, Anthoni U, Christophersen C, Eberl L, Molin S, Givskov M (1998) N-acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. J Bacteriol 180:6384–6388

    PubMed  CAS  Google Scholar 

  • Mack GL (1936) The determination of contact angles from measurements of the dimensions of small bubbles and drops. I. The spheroidal segment method for acute angles. J Phys Chem 40:159–167

    Article  CAS  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. WH Freeman, New York

    Google Scholar 

  • Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2674

    Article  PubMed  CAS  Google Scholar 

  • Matsushita M (1997) Formation of colony patterns by a bacterial cell population. In: Shapiro JM, Dworkin M (eds) Bacteria as multicellular organisms. Oxford University Press, New York, pp 366–393

    Google Scholar 

  • Matsushita M, Fujikawa H (1990) Diffusion-limited growth in bacterial colony formation. Physica A 168:498–506

    Article  CAS  Google Scholar 

  • Matsuyama T (1993) Wetting activity and fractal colony growth by bacteria. Surface 31:114–124 (in Japanese)

    Google Scholar 

  • Matsuyama T, Matsushita M (1992) Self-similar colony morphogenesis by gram-negative rods as the experimental model of fractal growth by a cell population. Appl Environ Microbiol 58:1227–1232

    PubMed  CAS  Google Scholar 

  • Matsuyama T, Matsushita M (1993) Fractal morphogenesis by a bacterial cell population. Crit Rev Microbiol 19:117–135

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama T, Matsushita M (1996) Morphogenesis by bacterial cells. In: Iannaccone PM, Khokha M (eds) Fractal geometry in biological systems – an analytical approach. CRC Press, Boca Raton, pp 127–171

    Google Scholar 

  • Matsuyama T, Nakagawa Y (1996a) Bacterial wetting agents working in colonization of bacteria on surface environments. Colloids Surf B Biointerfaces 7:207–214

    Article  CAS  Google Scholar 

  • Matsuyama T, Nakagawa Y (1996b) Surface-active exolipids: analysis of absolute chemical structures and biological functions. J Microbiol Meth 25:165–175

    Article  CAS  Google Scholar 

  • Matsuyama T, Fujita M, Yano I (1985) Wetting agent produced by Serratia marcescens. FEMS Microbiol Lett 28:125–129

    Article  CAS  Google Scholar 

  • Matsuyama T, Murakami T, Fujita M, Fujita S, Yano I (1986) Extracellular vesicle formation and biosurfactant production by Serratia marcescens. J Gen Microbiol 132:865–875

    CAS  Google Scholar 

  • Matsuyama T, Sogawa M, Yano I (1987) Direct colony thin-layer chromatography and rapid characterization of Serratia marcescens mutants defective in production of wetting agents. Appl Environ Microbiol 53:1186–1188

    PubMed  CAS  Google Scholar 

  • Matsuyama T, Sogawa M, Nakagawa Y (1989) Fractal spreading growth of Serratia marcescens which produces surface active exolipids. FEMS Microbiol Lett 61:243–246

    Article  CAS  Google Scholar 

  • Matsuyama T, Kaneda K, Ishizuka I, Toida T, Yano I (1990) Surface active novel glycolipid and linked 3-hydroxy fatty acids produced by Serratia rubidaea. J Bacteriol 172:3015–3022

    PubMed  CAS  Google Scholar 

  • Matsuyama T, Kaneda K, Nakagawa Y, Isa K, Hara-Hotta H, Yano I (1992) A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens. J Bacteriol 174:1769–1776

    PubMed  CAS  Google Scholar 

  • Matsuyama T, Harshey RM, Matsushita M (1993) Self-similar colony morphogenesis by bacteria as the experimental model of fractal growth by a cell population. Fractals 1:302–311

    Article  Google Scholar 

  • Matsuyama T, Bhasin A, Harshey RM (1995) Mutational analysis of flagellum-independent surface spreading of Serratia marcescens 274 on a low-agar medium. J Bacteriol 177:987–991

    PubMed  CAS  Google Scholar 

  • McCarter L (1999) The multiple identities of Vibrio parahaemolyticus. J Mol Microbiol Biotechnol 1:51–57

    PubMed  CAS  Google Scholar 

  • Miyazaki Y, Oka S, Hara-Hotta H, Yano I (1993) Stimulation and inhibition of polymorphonuclear leukocytes phagocytosis by lipoamino acids isolated from Serratia marcescens. FEMS Immunol Med Microbiol 6:265–271

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa Y, Matsuyama T (1993) Chromatographic determination of optical configuration of 3-hydroxy fatty acids composing microbial surfactants. FEMS Microbiol Lett 108:99–102

    Article  CAS  Google Scholar 

  • Nozawa T, Tanikawa T, Hasegawa H, Takahashi C, Ando Y, Matsushita M, Nakagawa Y, Matsuyama T (2007) Rhamnolipid-dependent spreading growth of Pseudomonas aeruginosa on a high-agar medium: marked enhancement under CO2-rich anaerobic conditions. Microbiol Immunol 51:703–712

    PubMed  CAS  Google Scholar 

  • Pradel E, Zhang Y, Pujol N, Matsuyama T, Bargmann CI, Ewbank J (2007) Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proc Natl Acad Sci USA 104:2295–2300

    Article  PubMed  CAS  Google Scholar 

  • Rauprich O, Matsushita M, Weijer CJ, Siegert F, Esipov SE, Shapiro JA (1996) Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol 178:6525–6538

    PubMed  CAS  Google Scholar 

  • Rice SA, Koh KS, Queck SY, Labbate M, Lam KW, Kjelleberg S (2005) Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J Bacteriol 187:3477–3485

    Article  PubMed  CAS  Google Scholar 

  • Shemyakin MM, Antonov VK, Shkrob AM, Shchelokov VI, Agadzhanyan ZE (1965) Activation of the amide group by acylation; hydroxy- and aminoacyl incorporation in peptide systems. Tetrahedron 21:3537–3572

    Article  PubMed  CAS  Google Scholar 

  • Strobel GA, Morrison SI, Cassella M (2003) Methods for protection of plants from Oomyocyte pathogens by use of Serratia marcescens and isolates. US Patent Appl US2003/0049230 A1

    Google Scholar 

  • Sunaga S, Li H, Sato Y, Nakagawa Y, Matsuyama T (2004) Identification and characterization of the pswP gene required for the parallel production of prodigiosin and serrawettin W1 in Serratia marcescens. Microbiol Immunol 48:723–728

    PubMed  CAS  Google Scholar 

  • Takahashi C, Nozawa T, Tanikawa T, Nakagawa Y, Wakita J, Matsushita M, Matsuyama T (2008) Swarming of Pseudomonas aeruginosa PAO1 without differentiation into elongated hyperflagellates on hard agar minimal medium. FEMS Microbiol Lett 280:169–175

    Article  PubMed  CAS  Google Scholar 

  • Tanikawa T, Nakagawa Y, Matsuyama T (2006) Transcriptional downregulator HexS controlling prodigiosin and serrawettin W1 biosynthesis in Serratia marcescens. Microbiol Immunol 50:587–596

    PubMed  CAS  Google Scholar 

  • Teixidó M, Caba JM, Prades R, Zurita E, Martinell M, Vilaseca M, Albericio F, Giralt E (2007) Does the solid-phase synthesis of a tetrapeptide represent a challenge at the onset of the XXI century? The case of cyclo [(3R)-3-hydroxydecanoyl-L-seryl-(3R)-hydroxydecanoyl-L-seryl]. Int J Pept Res Ther 13:313–327

    Article  Google Scholar 

  • Thomas MG, Burkart MD, Walsh CT (2002) Conversion of L-proline to pyrrolyl-2- carboxyl-S-PCP during undecylprodigiosin and pyoluteorin biosynthesis. Chem Biol 9:171–184

    Article  PubMed  CAS  Google Scholar 

  • Toguchi A, Siano M, Burkart M, Harshey RM (2000) Genetics of swarming motility in Salmonella enterica serovar Typhimurium: critical role for lipopolysaccharide. J Bacteriol 182:6308–6321

    Article  PubMed  CAS  Google Scholar 

  • Trauger JW, Kohli RM, Mootz HD, Marahiel MA, Walsh CT (2000) Peptide cyclization catalyzed by the thioesterase domain of tyrocidine synthetase. Nature 407:215–218

    Article  PubMed  CAS  Google Scholar 

  • Wakita J, Ràfols I, Itoh H, Matsuyama T, Matsushita M (1998) Experimental investigation on the formation of dense-branching-morphology-like colonies in bacteria. J Phys Soc Jpn 67:3630–3636

    Article  CAS  Google Scholar 

  • Wang Q, Suzuki A, Mariconda S, Porwollik S, Harshey RM (2005) Sensing wetness; a new role for the bacterial flagellum. EMBO J 24:2034–2042

    Article  PubMed  CAS  Google Scholar 

  • Wasserman HH, Keggi JJ, Mckeon JE (1961) Serratamolide, a metabolic product of Serratia. J Am Chem Soc 83:4107–4108

    Article  CAS  Google Scholar 

  • Wasserman HH, Keggi JJ, Mckeon JE (1962) The structure of serratamolide. J Am Chem Soc 84:2978–2982

    Article  CAS  Google Scholar 

  • Williams FD, Schwarzhoff RH (1978) Nature of the swarming phenomenon in Proteus. Annu Rev Microbiol 32:101–122

    Article  PubMed  CAS  Google Scholar 

  • Williamson NR, Fineran PC, Ogawa W, Woodley LR, Salmond GPC (2008) Integrated regulation involving quorum sensing, a two-component system, a GGDEF/EAL domain protein and a post-transcriptional regulator controls swarming and RhlA-dependent surfactant biosynthesis in Serratia. Env Microbiol 10(5):1202–1217. doi: 10.1111/j. 1462-2920. 2007. 01536.x

    Google Scholar 

  • Witten TA, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47:1400–1403

    Article  CAS  Google Scholar 

  • Yamashita M, Nakagawa Y, Li H, Matsuyama T (2001) Silica gel-dependent production of prodigiosin and serrawettins by Serratia marcescens in a liquid culture. Microbes Environ 16:250–254

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to all their coworkers at Niigata University and Chuo University. This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan, and by a grant from the Urakami Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohey Matsuyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matsuyama, T., Tanikawa, T., Nakagawa, Y. (2011). Serrawettins and Other Surfactants Produced by Serratia . In: Soberón-Chávez, G. (eds) Biosurfactants. Microbiology Monographs, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14490-5_4

Download citation

Publish with us

Policies and ethics