Skip to main content

Surfactin and Other Lipopeptides from Bacillus spp.

  • Chapter
  • First Online:
Biosurfactants

Part of the book series: Microbiology Monographs ((MICROMONO,volume 20))

Abstract

Isolated during 1950s and 1960s, the group of lipopeptides from Bacillus spp. gather more than 30 different peptides linked to various fatty acid chains. More than a 100 different compounds can so be described. In this chapter, they are classified into four main families: the surfactins, the iturins, the fengycins or plipastatins and the kurstakins. The biochemical mechanism responsible for their biosynthesis, which involved nonribosomal peptide synthetases, is described in detail. The complex cascade of regulation of surfactin synthetase operon and the environmental factors, which influence the lipopeptide production, are discussed. The main physico-chemical properties of these remarkable biosurfactants and their possible relationships with the biological activities are also presented. A brief overview of the molecular strategies developed to get modified lipopeptide compounds and the last bioprocesses set up for their production are given. In the last chapter, the main applications of surfactin are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abderrahmani A, Tapi A, Nateche F, Hacene H, Chollet M, Leclere V, Wathelet B, Jacques P (2010) Bioinformatics and molecular approaches to detect NRPS genes involved in the biosynthesis of kurstakin from Bacillus thuringiensis. Submitted

    Google Scholar 

  • Ahimou F, Jacques P, Deleu M (2000) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb Technol 27:749–754

    Article  PubMed  CAS  Google Scholar 

  • Akpa E, Jacques P, Wathelet B, Paquot M, Fuchs R, Budzikiewicz H, Thonart P (2001) Influence of culture conditions on lipopeptide production by Bacillus subtilis. Appl Biochem Biotechnol 91–93:551–561

    Article  PubMed  Google Scholar 

  • Aranda FJ, Teruel JA, Ortiz A (2005) Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochim Biophys Acta Biomembr 1713:51–56

    Article  CAS  Google Scholar 

  • Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494

    Article  PubMed  CAS  Google Scholar 

  • Aron ZD, Dorrestein PC, Blackhall JR, Kelleher NL, Walsh CT (2005) Characterization of a new tailoring domain in polyketide biogenesis: the amine transferase domain of MycA in the mycosubtilin gene cluster. J Am Chem Soc 127:14986–14987

    Article  PubMed  CAS  Google Scholar 

  • Athukorala SNP, Fernando WGD, Rashid KY (2009) Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Can J Microbiol 55:1021–1032

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin. Plant Physiol 134:307–319

    Article  PubMed  CAS  Google Scholar 

  • Besson F, Peypoux F, Michel G, Delcambe L (1977) The structure of bacillomycin L, an antibiotic from Bacillus subtilis. Eur J Biochem 77:61–67

    Article  PubMed  CAS  Google Scholar 

  • Bonmatin JM, Labbé H, Grangemard I, Peypoux F, Maget-Dana R, Ptak M, Michel G (1995) Production, isolation and characterization of [Leu4]- and [Ile4] surfactins from Bacillus subtilis. Lett Pept Sci 2:41–47

    Article  CAS  Google Scholar 

  • Bonmatin JM, Laprévote O, Peypoux F (2003) Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb Chem High Throughput Screen 6:541–556

    Article  PubMed  CAS  Google Scholar 

  • Bumpus SB, Evans BS, Thomas PM, Ntai I, Kelleher NL (2009) A proteomics approach to discovering natural products and their biosynthetic pathways. Nat Biotechnol 27:951–956

    Article  PubMed  CAS  Google Scholar 

  • Caboche S, Pupin M, Leclère V, Fontaine A, Jacques P, Kucherov G (2008) NORINE: a database of nonribosomal peptides. Nucleic Acids Res 36:D326–D331

    Article  PubMed  CAS  Google Scholar 

  • Caboche S, Pupin M, Leclère V, Jacques P, Kucherov G (2009) Structural pattern matching of nonribosomal peptides. BMC Struct Biol 9:15

    Article  PubMed  CAS  Google Scholar 

  • Cameotra SS, Makkar RS (2010) Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure Appl Chem 82:97–116

    Article  CAS  Google Scholar 

  • Cao X, Wang AH, Jiao RZ, Wang CL, Mao DZ, Yan L, Zeng B (2009) Surfactin induces apoptosis and G(2)/M arrest in human breast cancer MCF-7 cells through cell cycle factor regulation. Cell Biochem Biophys 55:163–171

    Article  PubMed  CAS  Google Scholar 

  • Carrillo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta 1611:91–97

    Article  PubMed  CAS  Google Scholar 

  • Chen HL, Chen YS, Juang RS (2007) Separation of surfactin from fermentation broths by acid precipitation and two-stage dead-end ultrafiltration processes. J Membr Sci 299:114–121

    Article  CAS  Google Scholar 

  • Chen HL, Chen YS, Juang RS (2008) Recovery of surfactin from fermentation broths by hybrid salting-out and filtration process. Sep Purif Technol 59:244–252

    Article  CAS  Google Scholar 

  • Chiocchini C, Linne U, Stachelhaus T (2006) In vivo biocombinatorial synthesis of lipopeptides by COM domain-mediated reprogramming of the surfactin biosynthetic complex. Chem Biol 13:899–908

    Article  PubMed  CAS  Google Scholar 

  • Cho KM, Math RK, Hong SY, SMd AI, Mandanna DK, Cho JJ, Yun MG, Kim JM, Yun HD (2009) Iturin produced by Bacillus pumilus HY1 from Korean soybean sauce (kanjang) inhibits growth of aflatoxin producing fungi. Food Control 20:402–406

    Article  CAS  Google Scholar 

  • Chollet-Imbert M, Gancel F, Slomianny C, Jacques P (2009) Differentiated pellicle organization and lipopeptide production in standing culture of Bacillus subtilis strains. Arch Microbiol 191:63–71

    Article  PubMed  CAS  Google Scholar 

  • Chung YR, Kim CH, Hwang I, Chun J (2000) Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int J Syst Evol Microbiol 50:1495–1500

    Article  PubMed  CAS  Google Scholar 

  • Conti E, Stachelhaus T, Marahiel MA, Brick P (1997) Structural basis for the activation of phenylalanine in the nonribosomal biosynthesis of gramicidin S. EMBO J 16:4174–4183

    Article  PubMed  CAS  Google Scholar 

  • Cooper DG, Macdonald CR, Duff SJ, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412

    PubMed  CAS  Google Scholar 

  • Cosby WM, Vollenbroich D, Lee OH, Zuber P (1998) Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control. J Bacteriol 180:1438–1445

    PubMed  CAS  Google Scholar 

  • Coutte F, Leclère V, Béchet M, Guez JS, Lecouturier D, Chollet-Imbert M, Dhulster P, Jacques P (2010a) Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. J Appl Microbiol. doi:10.1111/j13652672201004683

    PubMed  Google Scholar 

  • Coutte F, Lecouturier D, Ait Yahia S, Leclère V, Bèchet M, Jacques P, Dhulster P (2010b) Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Appl Microbiol Biotechnol. doi:10.1007/s0025301025048

    PubMed  Google Scholar 

  • Davis DA, Lynch HC, Varley J (2001) The application of foaming for the recovery of surfactin from B. subtilis ATCC 21332 cultures. Enzyme Microb Technol 28:346–354

    Article  PubMed  CAS  Google Scholar 

  • Debois D, Hamze K, Guérineau V, Le Caër JP, Holland IB, Lopes P, Ouazzani J, Séror SJ, Brunelle A, Laprévote O (2008) In situ localisation and quantification of surfactins in a Bacillus subtilis swarming community by imaging mass spectrometry. Proteomics 8:3682–3691

    Article  PubMed  CAS  Google Scholar 

  • Delcambe L (1950) Iturin, new antibiotic produced by Bacillus subtilis. C R Seances Soc Biol Fil 144:1431–1434

    PubMed  CAS  Google Scholar 

  • Deleu M, Paquot M, Jacques P, Thonart P, Adriaensen Y, Dufrène YF (1999a) Nanometer scale organization of mixed surfactin/phosphatidylcholine monolayers. Biophys J 77:2304–2310

    Article  PubMed  CAS  Google Scholar 

  • Deleu M, Razafindralambo H, Popineau Y, Jacques P, Thonart P, Paquot M (1999b) Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Colloids Surf A Physicochem Eng Asp 152:3–10

    Article  CAS  Google Scholar 

  • Deleu M, Nott K, Brasseur R, Jacques P, Thonart P, Dufrène YF (2001) Imaging mixed lipid monolayers by dynamic atomic force microscopy. Biochim Biophys Acta Biomembr 1513:55–62

    Article  CAS  Google Scholar 

  • Deleu M, Bouffioux O, Razafindralambo H, Paquot M, Hbid C, Thonart P, Jacques P, Brasseur R (2003) Interaction of surfactin with membranes: a computational approach. Langmuir 19:3377–3385

    Article  CAS  Google Scholar 

  • Dimitrov K, Gancel F, Montastruc L, Nikov I (2008) Liquid membrane extraction of bio-active amphiphilic substances: recovery of surfactin. Biochem Eng J 42:248–253

    Article  CAS  Google Scholar 

  • Drouin CM, Cooper DG (1992) Biosurfactants and aqueous two-phase fermentation. Biotechnol Bioeng 40:86–90

    Article  PubMed  CAS  Google Scholar 

  • Du L, Sanchez C, Shen B (2001) Hybrid peptide-polyketide natural products: biosynthesis and prospects toward engineering novel molecules. Metab Eng 3:78–95

    Article  PubMed  CAS  Google Scholar 

  • Dufour S, Deleu M, Nott K, Wathelet B, Thonart P, Paquot M (2005) Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. Biochim Biophys Acta Gen Subj 1726:87–95

    Article  CAS  Google Scholar 

  • Duitman EH, Hamoen LW, Rembold M, Venema G, Seitz H, Saenger W, Bernhard F, Reinhardt R, Schmidt M, Ullrich C, Stein T, Leenders F, Vater J (1999) The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Natl Acad Sci USA 96:13294–13299

    Article  PubMed  CAS  Google Scholar 

  • Duitman EH, Wyczawski D, Boven LG, Venema G, Kuipers OP, Hamoen LW (2007) Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Appl Environ Microbiol 73:3490–3496

    Article  PubMed  CAS  Google Scholar 

  • Eppelmann K, Stachelhaus T, Marahiel MA (2002) Exploitation of the selectivity-conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics. Biochemistry 41:9718–9726

    Article  PubMed  CAS  Google Scholar 

  • Eshita SM, Roberto NH, Beale JM, Mamiya BM, Workman RF (1995) Bacillomycin Lc, a new antibiotic of the iturin group: isolations, structures, and antifungal activities of the congeners. J Antibiot (Tokyo) 48:1240–1247

    Article  CAS  Google Scholar 

  • Fickers P, Leclère V, Guez JS, Béchet M, Coucheney F, Joris B, Jacques P (2008) Temperature dependence of mycosubtilin homologue production in Bacillus subtilis ATCC6633. Res Microbiol 159:449–457

    Article  PubMed  CAS  Google Scholar 

  • Fickers P, Guez JS, Damblon C, Leclère V, Béchet M, Jacques P, Joris B (2009) High-level biosynthesis of the anteiso-C(17) isoform of the antibiotic mycosubtilin in Bacillus subtilis and characterization of its candidacidal activity. Appl Environ Microbiol 75:4636–4640

    Article  PubMed  CAS  Google Scholar 

  • Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides 1. Annu Rev Microbiol 58:453–488

    Article  PubMed  CAS  Google Scholar 

  • Francius G, Dufour S, Deleu M, Paquot M, Mingeot-Leclercq MP, Dufréne YF (2008) Nanoscale membrane activity of surfactins: influence of geometry, charge and hydrophobicity. Biochim Biophys Acta Biomembr 1778:2058–2068

    Article  CAS  Google Scholar 

  • From C, Hormazabal V, Granum PE (2007) Food poisoning associated with pumilacidin-producing Bacillus pumilus in rice. Int J Food Microbiol 115:319–324

    Article  PubMed  CAS  Google Scholar 

  • Galli G, Rodriguez F, Cosmina P, Pratesi C, Nogarotto R, de Ferra F, Grandi G (1994) Characterization of the surfactin synthetase multi-enzyme complex. Biochim Biophys Acta 1205:19–28

    Article  PubMed  CAS  Google Scholar 

  • Gancel F, Montastruc L, Liu T, Zhao L, Nikov I (2009) Lipopeptide overproduction by cell immobilization on iron-enriched light polymer particles. Process Biochem 44:975–978

    Article  CAS  Google Scholar 

  • Gevers W, Kleinkauf H, Lipmann F (1968) The activation of amino acids for biosynthesis of gramicidin S. Proc Natl Acad Sci USA 60:269–276

    Article  PubMed  CAS  Google Scholar 

  • Grau A, Gomez-Fernandez JC, Peypoux F, Ortiz A (2001) Aggregational behavior of aqueous dispersions of the antifungal lipopeptide iturin A. Peptides 22:1–5

    Article  PubMed  CAS  Google Scholar 

  • Guez JS, Chenikher S, Cassar JP, Jacques P (2007) Setting up and modelling of overflowing fed-batch cultures of Bacillus subtilis for the production and continuous removal of lipopeptides. J Biotechnol 131:67–75

    Article  PubMed  CAS  Google Scholar 

  • Guez JS, Muller CH, Danzé PM, Buchs J, Jacques P (2008) Respiration activity monitoring system (RAMOS), an efficient tool to study the influence of the oxygen transfer rate on the synthesis of lipopeptide by Bacillus subtilis ATCC6633. J Biotechnol 134:121–126

    Article  PubMed  CAS  Google Scholar 

  • Hahn M, Stachelhaus T (2004) Selective interaction between nonribosomal peptide synthetases is facilitated by short communication-mediating domains. Proc Natl Acad Sci USA 101:15585–15590

    Article  PubMed  CAS  Google Scholar 

  • Hamoen LW, Eshuis H, Jongbloed J, Venema G, van Sinderen D (1995) A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Mol Microbiol 15:55–63

    Article  PubMed  CAS  Google Scholar 

  • Hamoen LW, Venema G, Kuipers OP (2003) Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology 149:9–17

    Article  PubMed  CAS  Google Scholar 

  • Hansen DB, Bumpus SB, Aron ZD, Kelleher NL, Walsh CT (2007) The loading module of mycosubtilin: an adenylation domain with fatty acid selectivity. J Am Chem Soc 129:6366–6367

    Article  PubMed  CAS  Google Scholar 

  • Hathout Y, Ho YP, Ryzhov V, Demirev P, Fenselau C (2000) Kurstakins: a new class of lipopeptides isolated from Bacillus thuringiensis. J Nat Prod 63:1492–1496

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Kensuke T, Kobayashi K, Ogasawara N, Ogura M (2006) Bacillus subtilis RghR (YvaN) represses rapG and rapH, which encode inhibitors of expression of the srfA operon. Mol Microbiol 59:1714–1729

    Article  PubMed  CAS  Google Scholar 

  • Hbid C, Jacques P, Razafindralambo H, Mpoyo MK, Meurice E, Paquot M, Thonart P (1996) Influence of the production of two lipopeptides, Iturin A and Surfactin S1, on oxygen transfer during Bacillus subtilis fermentation. Appl Biochem Biotechnol Part A Enzyme Eng Biotechnol 57–58:571–579

    Article  Google Scholar 

  • Heerklotz H, Seelig J (2007) Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur Biophys J 36:305–314

    Article  PubMed  CAS  Google Scholar 

  • Hofemeister J, Conrad B, Adler B, Hofemeister B, Feesche J, Kucheryava N, Steinborn G, Franke P, Grammel N, Zwintscher A, Leenders F, Hitzeroth G, Vater J (2004) Genetic analysis of the biosynthesis of nonribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol Genet Genomics 272:363–378

    Article  PubMed  CAS  Google Scholar 

  • Horowitz S, Gilbert JN, Griffin WM (1990) Isolation and characterization of a surfactant produced by Bacillus licheniformis 86. J Ind Microbiol Biotechnol 6:243–248

    CAS  Google Scholar 

  • Huszcza E, Burczyk B (2006) Surfactin isoforms from Bacillus coagulans. Z Naturforsch C 61:727–733

    PubMed  CAS  Google Scholar 

  • Hwang YH, Kim MS, Song IB, Park BK, Lim JH, Park SC, Yun HI (2009) Subacute (28 day) toxicity of surfactin C, a lipopeptide produced by Bacillus subtilis, in Rats. J Health Sci 55:351–355

    Article  CAS  Google Scholar 

  • Isa MHM, Frazier RA, Jauregi P (2008) A further study of the recovery and purification of surfactin from fermentation broth by membrane filtration. Sep Purif Technol 64:176–182

    Article  CAS  Google Scholar 

  • Itokawa H, Miyashita T, Morita H, Takeya K, Hirano T, Homma M, Oka K (1994) Structural and conformational studies of [Ile7] and [Leu7]surfactins from Bacillus subtilis natto. Chem Pharm Bull (Tokyo) 42:604–607

    Article  CAS  Google Scholar 

  • Jacques P, Hbid C, Destain J, Razafindralambo H, Paquot M, De Pauw E, Thonart P (1999) Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett-Burman design. Appl Biochem Biotechnol 77:223–233

    Article  Google Scholar 

  • Jourdan E, Henry G, Duby F, Dommes J, Barthélémy JP, Thonart P, Ongena M (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant Microbe Interact 22:456–468

    Article  PubMed  CAS  Google Scholar 

  • Julkowska D, Obuchowski M, Holland IB, Séror SJ (2005) Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium. J Bacteriol 187:65–76

    Article  PubMed  CAS  Google Scholar 

  • Kakinuma A, Tamura G, Arima K (1968) Wetting of fibrin plate and apparent promotion of fibrinolysis by surfactin, a new bacterial peptidelipid surfactant. Experientia 24:1120–1121

    Article  PubMed  CAS  Google Scholar 

  • Kameda Y, Ouhira S, Matsui K (1974) Antitumor activity of Bacillus natto. V. Isolation and characterization of surfactin in the culture medium of Bacillus natto KMD 2311. Chem Pharm Bull 22:938–944

    Article  PubMed  CAS  Google Scholar 

  • Kanlayavattanakul M, Lourith N (2010) Lipopeptides in cosmetics. Int J Cosmet Sci 32:1–8

    Article  PubMed  CAS  Google Scholar 

  • Kell H, Holzwarth JF, Boettcher C, Heenan RK, Vater J (2007) Physicochemical studies of the interaction of the lipoheptapeptide surfactin with lipid bilayers of L-alpha-dimyristoyl phosphatidylcholine. Biophys Chem 128:114–124

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Yoon BD, Lee CH, Suh HH, Oh HM, Katsuragi T, Tani Y (1997) Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9. J Ferment Bioeng 84:41–46

    Article  Google Scholar 

  • Kim K, Jung SY, Lee DK, Jung JK, Park JK, Kim DK, Lee CH (1998) Suppression of inflammatory responses by surfactin, a selective inhibitor of platelet cytosolic phospholipase A2. Biochem Pharmacol 55:975–985

    Article  PubMed  CAS  Google Scholar 

  • Kim PI, Bai H, Bai D, Chae H, Chung S, Kim Y, Park R, Chi YT (2004) Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J Appl Microbiol 97:942–949

    Article  PubMed  CAS  Google Scholar 

  • Konz D, Doekel S, Marahiel MA (1999) Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. J Bacteriol 181:133–140

    PubMed  CAS  Google Scholar 

  • Kopp F, Marahiel MA (2007) Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. Nat Prod Rep 24:735–749

    Article  PubMed  CAS  Google Scholar 

  • Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096

    Article  PubMed  CAS  Google Scholar 

  • Kracht M, Rokos H, Ozel M, Kowall M, Pauli G, Vater J (1999) Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J Antibiot (Tokyo) 52:613–619

    Article  CAS  Google Scholar 

  • Lai CC, Huang Y, Wei YH, Chang JS (2009) Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J Hazard Mater 167:609–614

    Article  PubMed  CAS  Google Scholar 

  • Landy M, Warren GH, Rosenman SB, Colio LG (1948) Bacillomycin an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc Soc Exp Biol Med 67:530–541

    Google Scholar 

  • Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    Article  PubMed  CAS  Google Scholar 

  • Leclère V, Marti R, Béchet M, Fickers P, Jacques P (2006) The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch Microbiol 186:475–483

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Kim SH, Park IH, Chung SY, Choi YL (2007) Isolation and structural analysis of bamylocin A, novel lipopeptide from Bacillus amyloliquefaciens LP03 having antagonistic and crude oil-emulsifying activity. Arch Microbiol 188:307–312

    Article  PubMed  CAS  Google Scholar 

  • Lin SC, Minton MA, Sharma MM, Georgiou G (1994) Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. Appl Environ Microbiol 60:31–38

    PubMed  CAS  Google Scholar 

  • Lin SC, Lin KG, Lo CC, Lin YM (1998) Enhanced biosurfactant production by a Bacillus licheniformis mutant. Enzyme Microb Technol 23:267–273

    Article  CAS  Google Scholar 

  • Liu XY, Yang SZ, Mu BZ (2009) Production and characterization of a C15-surfactin-O-methyl ester by a lipopeptide producing strain Bacillus subtilis HSO121. Process Biochem 44:1144–1151

    Article  CAS  Google Scholar 

  • Maget-Dana R, Thimon L, Peypoux F, Ptak M (1992) Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74:1047–1051

    Article  PubMed  CAS  Google Scholar 

  • Marahiel MA (2009) Working outside the protein-synthesis rules: insights into nonribosomal peptide synthesis. J Pept Sci 15:799–807

    Article  PubMed  CAS  Google Scholar 

  • May JJ, Kessler N, Marahiel MA, Stubbs MT (2002) Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc Natl Acad Sci USA 99:12120–12125

    Article  PubMed  CAS  Google Scholar 

  • Menkhaus M, Ullrich C, Kluge B, Vater J, Vollenbroich D, Kamp RM (1993) Structural and functional organization of the surfactin synthetase multienzyme system. J Biol Chem 268:7678–7684

    PubMed  CAS  Google Scholar 

  • Mireles JR II, Toguchi A, Harshey RM (2001) Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183:5848–5854

    Article  PubMed  CAS  Google Scholar 

  • Mizumoto S, Hirai M, Shoda M (2007) Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani. Appl Microbiol Biotechnol 75:1267–1274

    Article  PubMed  CAS  Google Scholar 

  • Mofid MR, Finking R, Essen LO, Marahiel MA (2004) Structure-based mutational analysis of the 4′-phosphopantetheinyl transferases Sfp from Bacillus subtilis: carrier protein recognition and reaction mechanism. Biochemistry 43:4128–4136

    Article  PubMed  CAS  Google Scholar 

  • Montastruc L, Liu T, Gancel F, Zhao L, Nikov I (2008) Integrated process for production of surfactin. Part 2. Equilibrium and kinetic study of surfactin adsorption onto activated carbon. Biochem Eng J 38:349–354

    Article  CAS  Google Scholar 

  • Mootz HD, Kessler N, Linne U, Eppelmann K, Schwarzer D, Marahiel MA (2002) Decreasing the ring size of a cyclic nonribosomal peptide antibiotic by in-frame module deletion in the biosynthetic genes. J Am Chem Soc 124:10980–10981

    Article  PubMed  CAS  Google Scholar 

  • Morikawa M, Ito M, Imanaka T (1992) Isolation of a new surfactin producer Bacillus pumilus A-1, and cloning and nucleotide sequence of the regulator gene, psf-1. J Ferment Bioeng 74:255–261

    Article  CAS  Google Scholar 

  • Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure-function relationship of lipopeptide biosurfactants. Biochim Biophys Acta Mol Cell Biol Lipids 1488:211–218

    Article  CAS  Google Scholar 

  • Moyne AL, Cleveland TE, Tuzun S (2004) Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol Lett 234:43–49

    Article  PubMed  CAS  Google Scholar 

  • Mulligan CN (2009) Recent advances in the environmental applications of biosurfactants. Curr Opin Colloid Interface Sci 14:372–378

    Article  CAS  Google Scholar 

  • Mulligan CN, Gibbs BF (1990) Recovery of biosurfactants by ultrafiltration. J Chem Technol Biotechnol 47:23–29

    Article  PubMed  CAS  Google Scholar 

  • N’Dir B, Hbid C, Cornelius C, Roblain D, Jacques P, Vanhentenryck F, Diop M, Thonart P (1994) Propriétés antifongiques de la microflore du netetu. Cah Agric 3:23–30

    Google Scholar 

  • Nakano MM, Magnuson R, Myers A, Curry J, Grossman AD, Zuber P (1991) srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J Bacteriol 173:1770–1778

    PubMed  CAS  Google Scholar 

  • Naruse N, Tenmyo O, Kobaru S, Kamei H, Miyaki T, Konishi M, Oki T (1990) Pumilacidin, a complex of new antiviral antibiotics. Production, isolation, chemical properties, structure and biological activity. J Antibiot (Tokyo) 43:267–280

    Article  CAS  Google Scholar 

  • Nishikiori T, Naganawa H, Muraoka Y, Aoyagi T, Umezawa H (1986) Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. III. Structural elucidation of plipastatins. J Antibiot (Tokyo) 39:755–761

    Article  CAS  Google Scholar 

  • Nitschke M, Costa SGVA (2007) Biosurfactants in food industry. Trends Food Sci Technol 18:252–259

    Article  CAS  Google Scholar 

  • Ohno A, Ano T, Shoda M (1995a) Effect of temperature on production of lipopeptide antibiotics, iturin A and surfactin by a dual producer, Bacillus subtilis RB14, in solid-state fermentation. J Ferment Bioeng 80:517–519

    Article  CAS  Google Scholar 

  • Ohno A, Ano T, Shoda M (1995b) Production of a lipopeptide antibiotic, surfactin, by recombinant Bacillus subtilis in solid state fermentation. Biotechnol Bioeng 47:209–214

    Article  PubMed  CAS  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  PubMed  CAS  Google Scholar 

  • Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P (2005) Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol 69:29–38

    Article  PubMed  CAS  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Kim Y (2009) Surfactin inhibits immunostimulatory function of macrophages through blocking NK-κB, MAPK and Akt pathway. Int Immunopharmacol 9:886–893

    Article  PubMed  CAS  Google Scholar 

  • Peypoux F (1978) Structure of iturine A, a peptidolipid antibiotic from Bacillus subtilis. Biochemistry 17:3992–3996

    Article  PubMed  CAS  Google Scholar 

  • Peypoux F, Michel G, Delcambe L (1976) The structure of mycosubtilin, an antibiotic isolated from Bacillus subtilis. Eur J Biochem 63:391–398

    Article  PubMed  CAS  Google Scholar 

  • Peypoux F, Besson F, Michel G (1978) Structure of iturin C from Bacillus subtilis. Tetrahedron 34:1147–1152

    Article  CAS  Google Scholar 

  • Peypoux F, Besson F, Michel G, Delcambe L (1981) Structure of bacillomycin D, a new antibiotic of the iturin group. Eur J Biochem 118:323–327

    Article  PubMed  CAS  Google Scholar 

  • Peypoux F, Marion D, Maget-Dana R (1985) Structure of bacillomycin F, a new peptidolipid antibiotic of the iturin group. Eur J Biochem 153:335–340

    Article  PubMed  CAS  Google Scholar 

  • Peypoux F, Pommier MT, Marion D, Ptak M, Das BC, Michel G (1986) Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J Antibiot (Tokyo) 39:636–641

    Article  CAS  Google Scholar 

  • Peypoux F, Bonmatin JM, Labbé H, Das BC, Ptak M, Michel G (1991) Isolation and characterization of a new variant of surfactin, the [Val7]surfactin. Eur J Biochem 202:101–106

    Article  PubMed  CAS  Google Scholar 

  • Peypoux F, Bonmatin JM, Labbé H, Grangemard I, Das BC, Ptak M, Wallach J, Michel G (1994) [Ala4]surfactin, a novel isoform from Bacillus subtilis studied by mass and NMR spectroscopies. Eur J Biochem 224:89–96

    Article  PubMed  CAS  Google Scholar 

  • Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563

    Article  PubMed  CAS  Google Scholar 

  • Razafindralambo H, Paquot M, Hbid C, Jacques P, Destain J, Thonart P (1993) Purification of antifungal lipopeptides by reversed-phase high-performance liquid chromatography. J Chromatogr 639:81–85

    Article  PubMed  CAS  Google Scholar 

  • Razafindralambo H, Paquot M, Baniel A, Popineau Y, Hbid C, Jacques P, Thonart P (1996) Foaming properties of surfactin, a lipopeptide biosurfactant from Bacillus subtilis. J Am Oil Chem Soc 73:149–151

    Article  CAS  Google Scholar 

  • Razafindralambo H, Popineau Y, Deleu M, Hbid C, Jacques P, Thonart P, Paquot M (1997) Surface-active properties of surfactin/iturin A mixtures produced by Bacillus subtilis. Langmuir 13:6026–6031

    Article  CAS  Google Scholar 

  • Rodrigues L, Banat IB, Teixera J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618

    Article  PubMed  CAS  Google Scholar 

  • Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Perez-Garcia A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20:430–440

    Article  PubMed  CAS  Google Scholar 

  • Schneider J, Taraz K, Budzikiewicz H, Deleu M, Thonart P, Jacques P (1999) The structure of two fengycins from Bacillus subtilis S499. Z Naturforsch C 54:859–865

    PubMed  CAS  Google Scholar 

  • Sen R (2008) Biotechnology in petroleum recovery: the microbial EOR. Progr Energy Combust Sci 34:714–724

    Article  CAS  Google Scholar 

  • Shakerifard P, Gancel F, Jacques P, Faille C (2009) Effect of different Bacillus subtilis lipopeptides on surface hydrophobicity and adhesion of Bacillus cereus 98/4 spores to stainless steel and Teflon. Biofouling 25:533–541

    Article  PubMed  Google Scholar 

  • Shen HH, Thomas RK, Chen CY, Darton RC, Baker SC, Penfold J (2009) Aggregation of the naturally occurring lipopeptide, surfactin, at interfaces and in solution: an unusual type of surfactant? Langmuir 25:4211–4218

    Article  PubMed  CAS  Google Scholar 

  • Sheppard JD, Cooper DG (1991) The response of Bacillus subtilis ATCC 21332 to manganese during continuous-phased growth. Appl Microbiol Biotechnol 35:72–76

    Article  CAS  Google Scholar 

  • Sieber SA, Marahiel MA (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 105:715–738

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 25:99–121

    Article  PubMed  CAS  Google Scholar 

  • Stachelhaus T, Schneider A, Marahiel MA (1995) Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269:69–72

    Article  PubMed  CAS  Google Scholar 

  • Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505

    Article  PubMed  CAS  Google Scholar 

  • Steller S, Vollenbroich D, Leenders F, Stein T, Conrad B, Hofemeister J, Jacques P, Thonart P, Vater J (1999) Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol 6:31–41

    Article  PubMed  CAS  Google Scholar 

  • Sumi H, Sasaki T, Yatagai C, Kozaki Y (2000) Determination and properties of the fibrinolysis accelerating substance (FAS) in Japanese fermented soybean Natto. Nippon Nōgei Kagakukaishi 74:1259–1264

    Article  CAS  Google Scholar 

  • Sun H, Bie X, Lu F, Lu Y, Wu Y, Lu Z (2009) Enhancement of surfactin production of Bacillus subtilis fmbR by replacement of the native promoter with the P spac promoter. Can J Microbiol 55:1003–1006

    Article  PubMed  CAS  Google Scholar 

  • Tanovic A, Samel SA, Essen LO, Marahiel MA (2008) Crystal structure of the termination module of a nonribosomal peptide synthetase. Science 321:659–663

    Article  PubMed  CAS  Google Scholar 

  • Tapi A, Chollet-Imbert M, Scherens B, Jacques P (2010) New approach for the detection of nonribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Appl Microbiol Biotechnol 85:1521–1531

    Article  PubMed  CAS  Google Scholar 

  • Thomas DW, Ito T (1969) The revised structure of the peptide antibiotic esperin, established by mass spectrometry. Tetrahedron 25:1985–1990

    Article  PubMed  CAS  Google Scholar 

  • Tosato V, Albertini AM, Zotti M, Sonda S, Bruschi CV (1997) Sequence completion, identification and definition of the fengycin operon in Bacillus subtilis 168. Microbiology 143:3443–3450

    Article  PubMed  CAS  Google Scholar 

  • Trischman JA, Jensen PR, Fenical W (1994) Halobacillin: a cytotoxic cyclic acylpeptide of the iturin class produced by a marine Bacillus. Tetrahedron Lett 35:5571–5574

    Article  CAS  Google Scholar 

  • Tsuge K, Ano T, Hirai M, Nakamura Y, Shoda M (1999) The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrob Agents Chemother 43:2183–2192

    PubMed  CAS  Google Scholar 

  • Tsuge K, Akiyama T, Shoda M (2001a) Cloning, sequencing, and characterization of the iturin A operon. J Bacteriol 183:6265–6273

    Article  PubMed  CAS  Google Scholar 

  • Tsuge K, Ohata Y, Shoda M (2001b) Gene yerP, involved in surfactin self-resistance in Bacillus subtilis. Antimicrob Agents Chemother 45:3566–3573

    Article  PubMed  CAS  Google Scholar 

  • Tsuge K, Inoue S, Ano T, Itaya M, Shoda M (2005) Horizontal transfer of iturin A operon, itu, to Bacillus subtilis 168 and conversion into an iturin A producer. Antimicrob Agents Chemother 49:4641–4648

    Article  PubMed  CAS  Google Scholar 

  • Umezawa H, Aoyagi T, Takeuchi T, Hamada M, Naganawa H, Muraoka Y, Nishikiori T (1988) Plipastatin and method for preparation thereof. Patent No 4742155

    Google Scholar 

  • Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin – a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29–3. J Antibiot (Tokyo) 39:888–901

    Article  CAS  Google Scholar 

  • Vollenbroich D, Pauli G, Ozel M, Vater J (1997) Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol 63:44–49

    PubMed  CAS  Google Scholar 

  • Volpon L, Tsan P, Majer Z, Vass E, Hollosi M, Noguera V, Lancelin JM, Besson F (2007) NMR structure determination of a synthetic analogue of bacillomycin Lc reveals the strategic role of L-Asn1 in the natural iturinic antibiotics. Spectrochim Acta A Mol Biomol Spectrosc 67:1374–1381

    Article  PubMed  CAS  Google Scholar 

  • Wakayama S, Ishikawa F, Oishi K (1984) Mycocerein, a novel antifungal peptide antibiotic produced by Bacillus cereus. Antimicrob Agents Chemother 26:939–940

    Article  PubMed  CAS  Google Scholar 

  • Walton RB, Woodruff HB (1949) A crystalline antifungal agent, mycrosubtilin, isolated from subtilin broth 1. J Clin Invest 28:924–926

    Article  PubMed  CAS  Google Scholar 

  • Wei YH, Wang LF, Chang JS (2004) Optimizing iron supplement strategies for enhanced surfactin production with Bacillus subtilis. Biotechnol Prog 20:979–983

    Article  PubMed  CAS  Google Scholar 

  • Whang LM, Liu PW, Ma CC, Cheng SS (2009) Application of rhamnolipid and surfactin for enhanced diesel biodegradation – effects of pH and ammonium addition. J Hazard Mater 164:1045–1050

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann G, Allgaier H, Lupp R, Jung G (1983) Iturin AL – a new long chain iturin a possessing an unusual high content of C16-beta-amino acids. J Antibiot (Tokyo) 36:1451–1457

    Article  CAS  Google Scholar 

  • Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706–1713

    PubMed  CAS  Google Scholar 

  • Yakimov MM, Abraham WR, Meyer H, Laura G, Golyshin PN (1999) Structural characterization of lichenysin A components by fast atom bombardment tandem mass spectrometry. Biochim Biophys Acta 1438:273–280

    Article  PubMed  CAS  Google Scholar 

  • Yakimov MM, Giuliano L, Timmis KN, Golyshin PN (2000) Recombinant acylheptapeptide lichenysin: high level of production by Bacillus subtilis cells. J Mol Microbiol Biotechnol 2:217–224

    PubMed  CAS  Google Scholar 

  • Yoneda T, Miyota Y, Furuya K, Tsuzuki T (2002) Production process of surfactin. Showa Denko K.K.(Tokyo, JP). United States Patent 7011969

    Google Scholar 

  • Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963

    Article  CAS  Google Scholar 

  • Zhang CZ, Liang FL, Zhang XP, Diao HX, Liu RL (2000) Physico-chemical properties and effect on crude oil of a bacterium-produced lipopeptide biosurfactant. Oilfield Chem 17:172–176

    Google Scholar 

Download references

Acknowledgements

The author thanks Dr Valérie Leclère, Dr Max Bechet, Dr François Coutte, Ursula Collins and Deirdre Hallinan for their kind re-reading of the manuscript and Isabelle Schack and Damien Jacques for help in the reference list and figure preparation. ProBioGEM is supported by the Université des Sciences et Technologies de Lille, the Region Nord Pas de Calais, the Ministere de la Recherche Scientifique (ANR) and the European Funds for the Regional Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Jacques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jacques, P. (2011). Surfactin and Other Lipopeptides from Bacillus spp.. In: Soberón-Chávez, G. (eds) Biosurfactants. Microbiology Monographs, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14490-5_3

Download citation

Publish with us

Policies and ethics