Advertisement

Learning Ultrasound-Guided Needle Insertion Skills through an Edutainment Game

  • Wing-Yin Chan
  • Dong Ni
  • Wai-Man Pang
  • Jing Qin
  • Yim-Pan Chui
  • Simon Chun-Ho Yu
  • Pheng-Ann Heng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6250)

Abstract

Ultrasound-guided needle insertion is essential in many of minimally invasive surgeries or procedures, such as biopsy, drug delivery, spinal anaesthesia, etc. Accurate and safe needle insertion is a difficult task due to the high requirement of hand-eye coordination skills. Many proposed virtual reality (VR) based training systems put their emphasis on realistic simulation instead of pedagogical efficiency. The lack of schematic training scenario leads to boredom of repetitive operations. To solve this, we present our novel training system with the integration of game elements in order to retain the trainees’ enthusiasm. Task-oriented scenarios, time attack scenarios and performance evaluation are introduced. Besides, some state-of-art technologies are also presented, including ultrasound simulation, needle haptic rendering as well as a mass-spring-based needle-tissue interaction simulation. These works are shown to be effective to keep the trainees up with learning.

Keywords

Virtual Reality Force Feedback Needle Insertion Haptic Device Ultrasound Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blackman, S.: Serious games...and less! SIGGRAPH Comput. Graph. 39, 12–16 (2005)CrossRefGoogle Scholar
  2. 2.
    Michel, D., Chen, S.: Serious Games: Games that educate, train and inform. In: Thomson Course Technology, Boston, MA, USA (2006)Google Scholar
  3. 3.
    Sinclair, J., Hingston, P., Masek, M., Nosaka, K.K.: Using a virtual body to aid in exergaming system development. IEEE Computer Graphics and Applications 29(2), 39–48 (2009)CrossRefGoogle Scholar
  4. 4.
    Zielke, M.A., Evans, M.J., Dufour, F., Christopher, T.V., Donahue, J.K., Johnson, P., Jennings, E.B., Friedman, B.S., Ounekeo, P.L., Flores, R.: Serious games for immersive cultural training: Creating a living world. IEEE Comput. Graph. Appl. 29(2), 49–60 (2009)CrossRefGoogle Scholar
  5. 5.
    Moreno-Ger, P., Blesius, C., Currier, P., Sierra, J.-L., Fernández-Manjón, B.: Online learning and clinical procedures: Rapid development and effective deployment of game-like interactive simulations. In: Pan, Z., Cheok, D.A.D., Müller, W., El Rhalibi, A. (eds.) Transactions on Edutainment I. LNCS, vol. 5080, pp. 288–304. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Jung, G.S., Kim, S.Y., Jung, S.K., Byun, S.D., Lee, Y.S.: Timed automata-based rehabilitation training game design for the affected lower extremity of hemiparetic patient. Transactions on Edutainment I, 17–27 (2008)Google Scholar
  7. 7.
    Kizony, R., Weiss, P.L., Shahar, M., Rand, D.: Theragame c a home based virtual reality rehabilitation system. In: Proc. of 6th Intl. Conf. Disability, Virtual Reality and Assoc. Tech., pp. 265–269 (2006)Google Scholar
  8. 8.
    Narayanasamy, V., Wong, K.W., Fung, C.C., Rai, S.: Distinguishing games and simulation games from simulators. Comput. Entertain 4(2), 9 (2006)CrossRefGoogle Scholar
  9. 9.
    Vidal, F.P., Chalmers, N., Gould, D.A., Healey, A.E., John, N.W.: Developing a needle guidance virtual environment with patient specific data and force feedback. In: Proc. of Computer Assisted Radiology and Surgery, pp. 418–423 (2005)Google Scholar
  10. 10.
    Forest, C., Comas, O., Vaysière, C., Soler, L., Marescaux, J.: Ultrasound and needle insertion simulators built on real patient-based data. Stud. Health Technol. Inform. 125, 136–139 (2007)Google Scholar
  11. 11.
    Hostettler, A., Forest, C., Forgione, A., Soler, L., Marescaux, J.: Real-time ultrasonography simulator based on 3d ct-scan images. Stud. Health Technol. Inform. 111, 191–193 (2005)Google Scholar
  12. 12.
    Magee, D., Zhu, Y., Ratnalingam, R., Gardner, P., Kessel, D.: An augmented reality simulator for ultrasound guided needle placement training. J. of Med. Bio. Eng. and Comput. 45(10), 957–967 (2007)CrossRefGoogle Scholar
  13. 13.
    Zhu, Y., Magee, D., Ratnalingam, R., Kessel, D.: A training system for ultrasound-guided needle insertion procedures. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 566–574. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Choi, K.S., Sun, H., Heng, P.A.: Interactive deformation of soft tissues with haptic feedback for medical learning. IEEE Transactions on Information Technology in Biomedicine 7(4), 358–363 (2003)CrossRefGoogle Scholar
  15. 15.
    Chan, W.Y., Qin, J., Chui, Y.P., Yu, S.C.H., Ho, S.S.M., Heng, P.A.: A six degree-of-freedom (dof) haptic model for percutaneous needle insertion training. In: The 94th Scientific Assembly and Annual Meeting of the RSNA 2008 (2008)Google Scholar
  16. 16.
    Johan, M.T.: Speckle Formation, Analysis and Processing Applied to Ultrasound Tissue Characterization. Physics for Medical Imaging Applications 240(3), 151–176 (2007)Google Scholar
  17. 17.
    Ni, D., Qu, Y., Yang, X., Chui, Y.P., Wong, T.T., Ho, S.S.M., Heng, P.A.: Volumetric ultrasound panorama based on 3d sift. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 52–60. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Chentanez, N., Alterovitz, R., Ritchie, D., Cho, L., Hauser, K.K., Goldberg, K., Shewchuk, J.R., O’Brien, J.F.: Interactive simulation of surgical needle insertion and steering. In: Proceedings of ACM SIGGRAPH 2009 (August 2009)Google Scholar
  19. 19.
    Lin, S., Lee, Y.S., Narayan, R.J.: Heterogeneous material modelling and virtual prototyping with 5-dof haptic force feedback for product development. International Journal of Mechatronics and Manufacturing Systems 1(1), 43–67 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Wing-Yin Chan
    • 1
  • Dong Ni
    • 1
  • Wai-Man Pang
    • 1
  • Jing Qin
    • 1
  • Yim-Pan Chui
    • 1
  • Simon Chun-Ho Yu
    • 2
  • Pheng-Ann Heng
    • 1
    • 3
  1. 1.Department of Computer Science and EngineeringThe Chinese University of Hong KongHong Kong SARChina
  2. 2.Department of Diagnostic Radiology and Organ ImagingThe Chinese University of Hong KongHong Kong SARChina
  3. 3.Shenzhen Institute of Advanced Integration TechnologyChinese Academy of Sciences/The Chinese University of Hong KongChina

Personalised recommendations