Fast Prototyping of Virtual Reality Based Surgical Simulators with PhysX-enabled GPU

  • Wai-Man Pang
  • Jing Qin
  • Yim-Pan Chui
  • Pheng-Ann Heng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6250)


We present our experience in fast prototyping of a series of important but computation-intensive functionalities in surgical simulators based on newly released PhysX-enabled GPU. We focus on soft tissue deformation and bleeding simulation, as they are essential but have previously been difficult to be rapidly prototyped. A multilayered soft tissue deformation model is implemented by extending the hardware-accelerated mass-spring system (MSS) in PhysX engine. To ensure accuracy, we configure spring parameters in an analytic way and integrate a fast volume preservation method to overcome the volume loss problem in MSS. Fast bleeding simulation with consideration of both patient behavior and mechanical dynamics is introduced. By making use of the PhysX built-in SPH-based fluid solver with careful assignment of parameters, realistic yet efficient bleeding effects can be achieved. Experimental results demonstrate that our approaches can achieve both interactive frame rates and convincing visual effects even when complex models are involved.


Smooth Particle Hydrodynamic Smooth Particle Hydrodynamic Surgical Simulator Multilayered Model Hardware Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu, A., Tendick, F., Cleary, K., Kaufmann, C.: A survey of surgical simulation: applications, technology, and education. Presence: Teleoperators and Virtual Environments 12(6), 599–614 (2003)CrossRefGoogle Scholar
  2. 2.
    Michel, D., Chen, S.: Serious Games: Games that educate, train and inform. In: Thomson Course Technology, Boston, MA, USA (2006)Google Scholar
  3. 3.
    Narayanasamy, V., Wong, K.W., Fung, C.C., Rai, S.: Distinguishing games and simulation games from simulators. Comput. Entertain. 4(2), 9 (2006)CrossRefGoogle Scholar
  4. 4.
    Rosser, J.C., Lynch, P.J., Cuddihy, L., Gentile, D.A., Klonsky, J., Merrell, R.: The impact of video games on training surgeons in the 21st century. Archives of Surgery 142(2), 181–186 (2007)CrossRefGoogle Scholar
  5. 5.
    Montgomery, K., Bruyns, C., Brown, J., Sorkin, S., Mazzela, F., Thonier, G., Tellier, A., Lerman, B., Menon, A.: Spring: A general framework for collaborative, realtime surgical simulation. In: Medicine Meets Virtual Reality 2002, pp. 296–303. IOS Press, Amsterdam (2002)Google Scholar
  6. 6.
    Cavusoglu, M.C., Goktekin, T., Tendick, F.: Gipsi: A framework for open source/open architecture software development for organ-level surgical simulation. IEEE Transactions on Information Technology in Biomedicine 10(2), 312–322 (2006)CrossRefGoogle Scholar
  7. 7.
    Allard, J., Cotin, S., Faure, F., Bensoussan, P., Poyer, F., Duriez, C., Delingette, H., Grisoni, L.: Sofa - an open source framework for medical simulation. In: Medicine Meets Virtual Reality. IOS Press, Amsterdam (2007)Google Scholar
  8. 8.
    Joachim, G., Rüdiger, W.: Mass-spring systems on the gpu. Simulation Modelling Practice and Theory 13, 693–702 (2005)CrossRefGoogle Scholar
  9. 9.
    Mosegaard, J., Sorensen, T.: Gpu accelerated surgical simulators for complex morphology. In: Proceedings of the 2005 IEEE Conference on Virtual Reality, Washington, DC, USA, pp. 147–153. IEEE Computer Society, Los Alamitos (2005)CrossRefGoogle Scholar
  10. 10.
    Taylor, Z., Cheng, M., Ourselin, S.: High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Transactions on Medical Imaging 27(5), 650–663 (2008)CrossRefGoogle Scholar
  11. 11.
    Nealen, A., Muller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. In: Eurographics State of Art. (2005)Google Scholar
  12. 12.
    Pang, W.M., Qin, J., Chui, Y.P., Wong, T.T., Leung, K.S., Heng, P.A.: Orthopedics surgery trainer with ppu-accelerated blood and tissue simulation. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 842–849. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Maciel, A., Halic, T., Lu, Z., Nedel, L.P., De, S.: Using the physx engine for physics-based virtual surgery with force feedback. The International Journal of Medical Robotics and Computer Assisted Surgery 5(3), 341–353 (2009)CrossRefGoogle Scholar
  14. 14.
    Louchen, J., Provot, X., Crochemore, D.: Evolutionary identification of cloth animation models. In: Proceedings of Eurographics Workshop on Computer Animation and Simulation, pp. 44–54 (1995)Google Scholar
  15. 15.
    Deussen, O., Kobbelt, L., Tucke, P.: Using simulated annealing to obtain good nodal approximations of deformable bodies. In: Proceedings of Eurographics Workshop on Computer Animation and Simulation, pp. 30–43 (1995)Google Scholar
  16. 16.
    Bianchi, G., Harders, M., Székely, G.: Mesh topology identification for mass-spring models. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 50–58. Springer, Heidelberg (2003)Google Scholar
  17. 17.
    Bianchi, G., Solenthaler, B., Szekely, G., Harders, M.: Simultaneous topology and stiffness identification for mass-spring models based on fem reference deformations. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 293–301. Springer, Heidelberg (2004)Google Scholar
  18. 18.
    Lloyd, B., Székely, G., Harders, M.: Identification of spring parameters for deformable object simulation. IEEE Transactions on Visualization and Computer Graphics 13(5), 1081–1094 (2007)CrossRefGoogle Scholar
  19. 19.
    Pailler-Mattei, C., Beca, S., Zahouani, H.: In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Medical Engineering and Physics 30(5), 599–606 (2008)CrossRefGoogle Scholar
  20. 20.
    Levinson, S.F., Shinagawa, M., Sato, T.: Sonoelastic determination of human skeletal muscle elasticity. Journal of Biomechanics 28(10), 1145–1154 (1995)CrossRefGoogle Scholar
  21. 21.
    Hong, M., Jung, S., Choi, M.H., Welch, S.W.J.: Fast volume preservation for a mass-spring system. IEEE Comput. Graph. Appl. 26(5), 83–91 (2006)CrossRefGoogle Scholar
  22. 22.
    Hong, M., Choi, M.-H., Jung, S., Welch, S., Trapp, J.: Effective constrained dynamic simulation using implicit constraint enforcement. In: International Conference on Robotics and Automation (April 2005)Google Scholar
  23. 23.
    Simpson, S.H., Menezes, G., Mardel, S.N., Kelly, S., White, R., Beattie, T.: A computer model of major haemorrhage and resuscitation. Med. Eng. Phys. 18(4), 339–343 (1996)CrossRefGoogle Scholar
  24. 24.
    Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. Springer, Berlin (1993)Google Scholar
  25. 25.
    Libersky, L.D., Petschek, A.G., Carney, T.C., Hipp, J.R., Allahdadi, F.A.: High strain lagrangian hydrodynamics: a three-dimensional sph code for dynamic material response. Journal of Computational Physics 109, 67–75 (1993)zbMATHCrossRefGoogle Scholar
  26. 26.
    Monaghan, J.J.: Simulating free surface flows with sph. Journal of Computational Physics 110, 399–406 (1994)zbMATHCrossRefGoogle Scholar
  27. 27.
    Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of ACM SIGGRAPH Symposium on Computer Animation (SCA), pp. 154–159 (2003)Google Scholar
  28. 28.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. In: SIGGRAPH 1987 Proceedings, vol. 21(4) (July 1987)Google Scholar
  29. 29.
    Qin, J., Chui, Y.P., Pang, W.M., Choi, K.S., Heng, P.A.: Learning blood management in orthopedic surgery through gameplay. IEEE Computer Graphics and Applications 30, 45–57 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Wai-Man Pang
    • 1
  • Jing Qin
    • 2
  • Yim-Pan Chui
    • 2
  • Pheng-Ann Heng
    • 2
  1. 1.Spatial Media Group, Computer Arts LabUniversity of AizuJapan
  2. 2.Dept. of Computer Science and EngineeringThe Chinese University of Hong Kong 

Personalised recommendations