Advertisement

A Model Systems for Gravity Research: The Belousov-Zhabotinsky Reaction

  • Meike Wiedemann
  • Florian P. M. Kohn
  • Harald Roesner
  • Wolfgang R. L. Hanke
Part of the Nonlinear Physical Science book series (NPS)

Abstract

Before going into the details of neuronal tissue as an excitable medium being controlled by small external forces including gravity, it might be useful to remember that excitable media exist about everywhere in real nature and that historically especially some chemical reactions are closely related to the study of such excitable media.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blank M. and Soo L, 2003, Electromagnetic acceleration of the Belousov-Zhabotinsky reaction, Bioelectrochemistry, 61, 93–97.CrossRefGoogle Scholar
  2. Belousov B.P., 1959, Eine periodische Reaktion und ihr Mechanismus (translated from Russian to German), Sbornik referatov po radiacionoj medicine za 1958 g Moskau, 147, 145.Google Scholar
  3. Fernandes de Lima V.M., Piqueira J.R.C. and Hanke W., 2002, Development of an experimental module to study the modulation of the propagation velocity of chemical exitation waves in gels by weak external forces (gravity), J. Gravitational Physiol., 9, 347–348.Google Scholar
  4. Fujieda et al., 1997, Effect of Microgravity on the Spatial Oscillation Behaviour of Belousov-Zhabotinsky Reactions Catalysed by Ferroin, J. Phys. Chem., A, 101, 7926–7928.CrossRefGoogle Scholar
  5. Fujieda S. et.al., 1999, Nonequilibrium/ non-linear chemical oscillation in the virtual absence of gravity, Advances of Space Research, 23, 2057–2063.CrossRefADSGoogle Scholar
  6. Fujieda et al., 2002, Effect of gravity field on the nonequilibrium/nonlinear chemical oscillation reactions, Advances in Space Research, 28, 537–543.CrossRefADSGoogle Scholar
  7. Hanke W., 1999, Inverse dispersion relation of BZ waves in non-stationary gels, Int. J. Bifurcation and Chaos, 9, 2009–2014.Google Scholar
  8. Hanke W., Sieber M., Spencer P., Schwertner J. and Fernades de Lima V.M., 2009, Properties of waves propagation in a gel-type Belousov-Zhabotinsky reaction under microgravity, Microgravity Science and Technology, 3, 239–246.CrossRefGoogle Scholar
  9. Luengviriya C., Storb U., Hauser M.J.B. and Mueller, S.C., 2006, An elegant method to study an isolated spiral wave in a thin layer of a batch Belousov-Zhabotinsky reaction under oxygen free conditions, Phys. Chem. Chem. Phys., 8, 1425–1429CrossRefGoogle Scholar
  10. Miyakawa K. and Mizoguchi M., 1998, Response of an immobilized-catalyst Belousov-Zhabotinsky reaction system to electric fields, Journal of Chemical Physics, 109, 7462–7467.CrossRefADSGoogle Scholar
  11. Nagypal I., Bazsa G., and Epstein, 1986, Gravity-Induced Anisotropies in Chemical Waves, Journal of the American Chemical Society, 108, 3635–3640.CrossRefGoogle Scholar
  12. Piqueira J.R.C., Fernandes de Lima V.M. and Hanke W., 2003, Microgravity effects in Belousov-Zhabotinsky (BZ) reaction, J. Gravitational Physiol, 10, 115–116.Google Scholar
  13. Pojman J., Khan A.M. and Mathias L.J., 1997, Frontal polymerization in microgravity: Results from the Conquest I sounding rocket flight, Microgravity in Science Technology, X, 36–40.Google Scholar
  14. Schmidt B. and Müller S.C., 1997, Forced parallel drift of spiral waves in the Belousov-Zhabotinsky reaction, Physical Review, 55, 4390–4393.ADSGoogle Scholar
  15. Ševčíková H., Schreiber I. and Marek, M., 1996, Dynamics of oxidation Belousov-Zhabotinsy waves in an electric field, Journal of Physical Chemistry, 100, 19153–19164.CrossRefGoogle Scholar
  16. Sontag W., 2006, Low frequency electromagnetic fields and the Belousov-Zhabotinsky reaction. Bioelectromagnetica, 27, 314–319.CrossRefGoogle Scholar
  17. Yamaguchi T., Kuhnert L., Nagy-Ungvarai Z., Müller S.-C. and Hess B., 1991, Gel systems for the Belousov-Zhabotinsky reaction, Journal of Physical Chemistry., 95, 5831–5837.CrossRefGoogle Scholar
  18. Zaikin A.N. and Zhabotinsky A.M., 1970, Concentration wave propagation in two-dimensional liquid-phase self-oscillating system, Nature, 225, 535–537.CrossRefADSGoogle Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Meike Wiedemann
    • 1
  • Florian P. M. Kohn
    • 1
  • Harald Roesner
    • 2
  • Wolfgang R. L. Hanke
    • 1
  1. 1.Department of Physiology (230)University of Hohenheim MembramephysiologyStuttgartGermany
  2. 2.Department of ZoologyUniversity of HohenheimStuttgartGermany

Personalised recommendations