Effects of Altered Gravity on the Actin and Microtubule Cytoskeleton, Cell Migration and Neurite Outgrowth

  • Meike Wiedemann
  • Florian P. M. Kohn
  • Harald Roesner
  • Wolfgang R. L. Hanke
Part of the Nonlinear Physical Science book series (NPS)


Human SH-SY5Y neuroblastoma cells were used to study the effects of altered gravity on the actin and microtubule cytoskeleton dynamics. A cholinergic stimulation of the cells during a 6-min period of changing gravity (3 parabolas) resulted in an enhanced actin-driven protrusion of evoked lamellipodia. Likewise, the spontaneous protrusive activity of non-activated cells was promoted during exposure to changing gravity (6 up to 31 parabolas). Ground-based experiments revealed a similar enhancement of the spontaneous and an evoked lamellar protrusive activity when the cells were kept at 2g hyper—gravity for at least 6 min. This gravity response was independent of the direction of the acceleration vector in respect to the cells. Exposure of the cells to “simulated weightlessness” (clinorotation) had no obvious influence on this type of lamellar actin cytoskeleton dynamics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balbwin K.M., Herrik R.E., Ilyina-Kakueva E. and Oganov V.S., 1990, Effects of zero gravity on myofibil content and isomyosin distribution in rodent skeletal muscle, Faseb J., 4, 79–83.Google Scholar
  2. Boonstra J., 1989, Influence of simulated gravity changes on epidermal growth factor induced cell rounding, epidermal growth factor-receptor clustering and fos transcription, ELGRA News, 11, 3.Google Scholar
  3. Bräucker R. and Hemmersbach R., 2002, Ciliates as model systems for cellular graviperception, J. Gravit. Physiol., 9, 249–252.Google Scholar
  4. Braide M., Ebrahimzadeh P.R., Strid K.G. and Bjursten L.M., 1994, Migration of human granulocytes in filters: effects of gravity and movable gradients of f-MLP, Biorheology, 31, 617–630.Google Scholar
  5. Brandt R., 1998, Cytoskeletal mechanisms of axon outgrowth and pathfinding, Cell Tissue Res., 292, 181–189.CrossRefGoogle Scholar
  6. Braun. M., Buchen B. and Sievers A., 2002, Actomyosin-mediated statolith positioning in gravisensing plant cells studied in microgravity, J. Plant Growth Regul., 21, 137–145.CrossRefGoogle Scholar
  7. Brown J. and Bridgeman P.C., 2003, The role of myosin II in axonal outgrowth, J. Histochem. Cytochem., 51, 421–428.CrossRefGoogle Scholar
  8. Chen H., Bernstein B.W. and Bamburg J.R., 2000, egulating actin-filament dynamics in vivo, Trends Biochem., 25, 19–23.CrossRefGoogle Scholar
  9. Gershovich J.G. and Buravkova L.B., 2007, Morphofunctional status and osteogenic differentiation potential of human mesenchymal stromal precurcor cells during in vitro modelling of microgravity effects, Bull. Exp. Med., 144, 608–613.CrossRefGoogle Scholar
  10. Glade N., Demongeot J. and Tabony J., 2002, Comparison of reaction-diffusion simulations with experimental self-organized microtubule solutions, CR. Biol., 325, 283–294.CrossRefGoogle Scholar
  11. Gruener R., Roberts R. and Reitstetter R., 1993, Exposure to microgravity alters properties of cultured muscle cells, ASGSB Bull., 7, 65.Google Scholar
  12. Guignandon A., Lafage-Proust M.H., Usson Y., Laroche N., Caillot-Augusseau A., Alexandre C. and Vico L., 2007, Cell cycling determines integrin-mediated adhesion in osteoblastic ROS 17/2.8 cells exposed to space-related conditions, Faseb. J., 15, 2036–2038.Google Scholar
  13. Häder D.P. and Hemmersbach R., 1998, Graviperception and orientation in flagellates, Planta, 203, 7–10.CrossRefGoogle Scholar
  14. Häder D.P., Hemmersbach R. and Lebert M., 1997, Gravity and the Behaviour of Unicellular Organisms, Cambridge University Press, Cambridge.Google Scholar
  15. Hatte J.P., Gaubert F., Cazanave J.P. and Schmitt D., 2002, Microgravity modifies protein Kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood cells, J. Cell Biochem., 87, 39–50.CrossRefGoogle Scholar
  16. Hemmersbach R. and Häder D.P., 1999, Graviresponses of certain ciliates and flagellates, FASEB J., 13, 69–75.Google Scholar
  17. Himmelspach R. and Wymer C.L., Lloyd C.W and Nick P., 1999, Gravity-induced reorientation of cortical microtubules observed in vivo, Plant J., 18, 449–453.CrossRefGoogle Scholar
  18. Hoeger G. and Gruener R., 1990, Cytoskeletal properties are sensitive to vector-free gravity, ASGSB Bull., 4, 42-.Google Scholar
  19. Hughes-Fulford M. and Lewis M.L., 1996, Effects of microgravity on osteoblast growth activation, Exp. Cell. Res., 224, 103–109.CrossRefGoogle Scholar
  20. Jung A. and Rösner H., 2002, RACI-dependent regulation of cholinergically induced lamellar protrusive activity is independent of MAPKinase and attenuated by active p-JNK, NeuroReport, 13, 2443–2446.CrossRefGoogle Scholar
  21. Kaverina I., Krylyskina O. and Small J.V., 2002, Regulation of substrate adhesion dynamics during cell motility, Int. J. Biochem. Cell Biol., 34, 746–761.CrossRefGoogle Scholar
  22. Klein-Nulend J., Bacabac R.G., Veldhuijzen J.P. and VanLoon J.J., 2003, Microgravity and bone-cell mechanosensitivity, Adv. Space Res., 32, 1551–1559.CrossRefADSGoogle Scholar
  23. Lewis M.L., 2002, The cytoskeleton, apoptosis, and gene expression in T lymphocytes and other mammalian cells exposed to altered gravity. In: Cogoli A (Ed.) Cell Biology and Biotechnology in Space, Elsevier Science B.V., Amsterdam, 77–128.CrossRefGoogle Scholar
  24. Lewis M.L., Reynolds I.L., Cubano L.A., Hatton J.P., Lawless B.P. and Piepmeier E.H., 2002, Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Yurkat), FASEB J., 12, 1007–1018.Google Scholar
  25. Lin, C.H., Espreafico E.M., Mooseker M.S and Forscher P., 1996, Myosin drives retrograde F-actin flow in neuronal growth cones, Neuron, 16, 769–782.CrossRefGoogle Scholar
  26. Papaseit C., Pochon N. and Tabony J., 2000, Microtubule self-organisation is gravity-dependent, Proc. Natl. Acad. Sci., 18, 8364–8368.CrossRefADSGoogle Scholar
  27. Pellis N.R., Coodwin T.J., Risin D., Mcintyre B.W., Pizzini R.P., Cooper D., Baker T.L. and Spaulding G.F., 1997, Changes in gravity inhibit lymphocyte locomotion through type I collagen, Vitro Cell Dev. Biol. Anim, 33, 398–405.CrossRefGoogle Scholar
  28. Piepmeier E.H., Kalm J.E., McIntyre K.M. and Lewis M.L., Prolonged weightlessness affects promyelocyte multidrug resistence, Exp. Cell Res., 237, 410–418.Google Scholar
  29. Rösner H. and Fischer H., 1996, In growth cones of rate cerebral neurons and human neuroblastoma cells, activation of protein Kinase C causes a shift from filopodial to lamellipodial dynamics, Neurosci Lett., 219, 175–178.CrossRefGoogle Scholar
  30. Rösner H., Vacun G. and Rebhan M., 1995, Muscarinic receptor-mediated induction of actin-driven lamellar protrusions in neuroblastoma cell somata and growth cones, Involvement of protein Kinase C. Eur. J. Cell Biol., 66, 324–334.Google Scholar
  31. Rösner H., Williams L.A.D., Jung A. and Krauss W., 2001, Disassembly of microtubules and inhibition of neurite outgrowth, neuroblastoma cell proliferation, and MAPKinase tyrosine-dephosphorylation by dibenzyltrisulphide, Biochem. Biophys. Acta., 1540, 66–177.Google Scholar
  32. Rösner H., Wassermann T., Möller W. and Hanke W., 2006, Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblstoma cells, Protoplasma, 229, 225–234.CrossRefGoogle Scholar
  33. Rösner H., Möller W., Wassermann T., Mihatch J, and Blum M., 2007, Attenuation of actomyosinII contractile activity in in growth cones accelerates filopodioa-guided and microtubule-based neurite elongation, Brain Res., 1176, 1–10.CrossRefGoogle Scholar
  34. Romanov Y., Kabaeva N.V. and Buravkova L., 2000, Simulated hypogravity stimulates cell spreading and wound healing in cultured human vascular endothelial cells, J. Gravit. Physiol., 7, 77–78.Google Scholar
  35. Romanov Y., Kabaeva N.V. and Buravkova L.B., 2001, Alteratios in actin cytoskeleton and rate of reparation of human endothelium (the wound healing model) under the condition of clinostatting, Aviakosm Ekolog Med., 35, 37–40.Google Scholar
  36. Sarkar D., Nagaya T., Koga K., Nomura Y., Gruener R. and Seo H., 2000, Culture in vector-averaged gravity and clinostat rotation results in apoptosis of osteoblastic ROS 17/2.8 cells, J. Bone Mineral Res., 15, 489–498.CrossRefGoogle Scholar
  37. Schäfer A.W., Kabir N. and Forscher P., 2002, Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones, J. Cell Biol., 156, 139–152.CrossRefGoogle Scholar
  38. Schatten H., Lewis M.L. and Chakrabarti A., 2001, Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells, Acta Astronaut., 49, 399–418.CrossRefADSGoogle Scholar
  39. Sundaresan A., Risin D. and Pellis N.R., 2002, Loss of signal transduction and inhibition of lymphozyte locomotion in a groud.based model of microgravity, In Vitro Cell Dev. Biol. Anim., 38, 118–122.CrossRefGoogle Scholar
  40. Tabony J., Glade N., Papaseit C. and Demongeot J., 2002a, Microtubule self-organisation and its gravity dependence, Adv. Space Biol. Med., 8, 19–58.CrossRefGoogle Scholar
  41. Tabony J., Glade N., Papaseit C. and Demongeout J., 2002b, Gravity dependence of microtubule preparations, J. Gravit. Physiol., 9, 245–248.Google Scholar
  42. Uva B.M., Masini M.A., Sturla M., Prato P., Passalacqua M., Giuliani M., Tagliafierro G. and Strollo F., 2002, Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture, Brain Res., 3, 132–139.CrossRefGoogle Scholar
  43. Vassy J., Portet S,. Beil M., Millot G., Fauvel-Lafève F., Karniguian A., Gasset G., Irinopoulou T., Calvo F., Rigaut J.P.and Schoevaert D., 2001, The effect of weightlessness on cytoskeleton architecture and proliferation of human breast cancer cell line MCF-7, FASEB J., 15, 1104–1106.Google Scholar
  44. Vincent L., Avancena P., Cheng J., Rafii, S. and Rabbany S.Y., 2005, Simulated microgravity impairs leukemic cell survival theough altering VEGFR-2/VEGF-A signalling pathways, Ann. Biomed. Eng., 33, 1405–1410.CrossRefGoogle Scholar
  45. Yamamoto K. and Kiss J.Z., 2002, Disruption of the actin cytoskeleton results in the promotion of gravitropism in inflorescence stems and hypocotyls of Arabidopsis, Plant Physiol., 128, 669–681.CrossRefGoogle Scholar
  46. Zayzafoon M., Meyers V.E. and McDonald J.M., 2005, Microgravity: the immune response and bone, Immunol. Rev., 208, 267–280.CrossRefGoogle Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Meike Wiedemann
    • 1
  • Florian P. M. Kohn
    • 1
  • Harald Roesner
    • 2
  • Wolfgang R. L. Hanke
    • 1
  1. 1.Department of Physiology (230)University of Hohenheim MembramephysiologyStuttgartGermany
  2. 2.Department of ZoologyUniversity of HohenheimStuttgartGermany

Personalised recommendations