Advertisement

The Brain Itself in Zero-g

  • Meike Wiedemann
  • Florian P. M. Kohn
  • Harald Roesner
  • Wolfgang R. L. Hanke
Part of the Nonlinear Physical Science book series (NPS)

Abstract

In this study we could clearly show that microgravity and hyper gravity respectively lead to a neuromodulation in the cerebral cortex of humans. This implies different excitability of the neuronal networks and different arousal states of the subjects that might involve different states of attention and focus and therefore different mental and motor performance skills. Unfortunately the brain is characterized by all properties of complex system and therefore the processes at every level are chaotic, unstable and non-linear and unpredictable. Especially in our results with the slow cortical potentials this is expressed in the reaction of the brain to the altered gravity stimuli, where the polarity of the DC shifts to depend on each individual brain of the different subjects. Concerning the ambitions that brain machine interfaces are prospected for space system control, further research is essential about how the brain is influenced by microgravity conditions. Furthermore this study as a logical continuation of the above chapters shows that the fragmentation of complex systems in sub-systems that is conventionally used in biological research is very useful for the clarification of the underlying mechanisms but should always be verified in the whole system at best under the same experimental conditions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arns M., de Ridder S., Strehl U., Breteler M. and Coenen A., 2009, Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis, Journal of Clinical EEG & Neuroscience, July, 180–189.Google Scholar
  2. Beckers F., Seps B., Ramaekers D. and Verheyden B., 2003, Parasympathetic heart rate modulation during parabolic flights, Eu. J. App l. Physiol., 90, 83–91.CrossRefGoogle Scholar
  3. Cheron G., Leroy A., Saedeleer D.E., Bengoetxea A., Lipshits M., Cebolla A., Servais L., Dan B., Berthoz A. and McIntyre J., 2006, Effect of gravity on human spontaneous 10-Hz electro-encephalographic oscillations during the arrest reaction, Brain Res., 1121, 105–116.CrossRefGoogle Scholar
  4. Elbert T., 1993, Slow Cortical Potentials reflect the regulation of cortical excitability, In: McCallum W.C. and Curry S.H. (Eds.), Slow Potential Changes in the Human Brain, Plenum Press, New York, 235–255.Google Scholar
  5. Graille C., Shlyck G., Buser P., Kozlovskaia I. and Rouguel-Buser A., 1998, In-flight electrocorticograms Compared to ground controls in behaving monkeys: difference in attentional states, Brain Research Reviews, 28, 52–60.CrossRefGoogle Scholar
  6. Heinrich H., Gevensleben H., Freisleder F.J., Moll G.H. and Rothenberger A., 2004, Training of Slow Cortical Potentials in Attention-Deficit/Hyperactivity Disorder: Evidence for Positive Behavioral and Neurophysiological Effects, Biol. Psychiatry, 55, 772–775.CrossRefGoogle Scholar
  7. Lipnicki D.M., 2009, Baroreceptor acitivity potentially facilitates cortical inhibition in zero g, Neuroimage, 46, 10–11.CrossRefGoogle Scholar
  8. Lujan B.F. and White R.J., 1995, Human Physiology in Space, National Aeronautics and Space Administration Headquarters.Google Scholar
  9. Menon C., de Negueruela C., Millán J., Tonet O., Carpi F, Broschart M., Ferrez P., Buttfield A., Tecchio F., Sepulveda F., Citi L., Laschi C., Tombini M., Dario P., Rossini P.M. and de Rossi D., 2009, Prospect of brain-machine interfaces for space system control, Acta Astronautica, 64, 448–456.CrossRefADSGoogle Scholar
  10. Meissner K. and Hanke W., 2005, Action potential properties are gravity dependent, Microgravity Science and Technology, XVII-2, 38–43CrossRefGoogle Scholar
  11. Rockstroh B., Elbert T., Canavan A., Lutzenberger W. and Birbaumer N., 1989, Slow Potentials and Behaviour, Urban und Schwarzenberg, München.Google Scholar
  12. Schneider S., Brümmer V., Mierau A., Carnahan H., Dubrowski A. and Strüder H., 2007, Increased brain cortical activity during parabolic flights has no influence on motor tracking task, Exp. Brain Res., 0014-4819 (Print) 1432-1106 (Online).Google Scholar
  13. Schneider S., Brümmer V., Carnahan H., Dubrowski A., Askew C.D. and Strüder H.K., 2008, What happens to the brain in weightlessness? A first approach by EEG tomography, Neuroimage, 42, 1316–1323.CrossRefGoogle Scholar
  14. Siniatchkin M,. Hierundar A., Kropp P., Kuhnert R., Gerber W.D. and Stephani U., 2000, Self-regulation of slow cortical potentials in children with migraine: an exploratory study, Appl. Psychophysiol Biofeedback, 25, 13–32.CrossRefGoogle Scholar
  15. Somjen G.G., Segal M.B. and Herreras O., 1991, Osmotic-hypertensive opening of the blood-brain barrier in rats does not necissarily provide acces for potassium to cerebral interstitial fluid, Exp. Physiol., 76, 507–514.Google Scholar
  16. Strehl U., Kotchoubey B., Trevorrow T. and Birbaumer N., 2005, Predictors of seizure reduction after self regulation of slow cortical potentials as a treatment of drug resistant epilepsy, Epilepsy and behavior, 6, 156–166.CrossRefGoogle Scholar
  17. Strehl U., Leins U., Goth G., Klinger C., Hinterberger T. and Birbaumer N., 2006, Self-regulation of slow cortical potentials—a new treatment for children with ADHD, Pediatrics, 118, 1530–1540.CrossRefGoogle Scholar
  18. Tan G., Thornby J., Hammond D.C., Strehl U, Canady B., Arnemann A. and Kaiser D.A., 2009, Meta-analysis of EEG biofeedback in treating epilepsy, Journal of Clinical EEG & Neuroscience, July, 173–179.Google Scholar
  19. Vanhatalo S., Tallgren P., Becker C., Holmes M.D., Miller J.W., Kaila K. and Voipio J., 2003, Scalp-recorded slow EEG responses generated in response to hemodynamic changes in the brain, Clinical Neurophysiology, 114, 1744–1754.CrossRefGoogle Scholar
  20. Weimer M. and Hanke W., 2005, Propagation velocity and triggering threshold of the retinal spreading depression are not correlated, Exp. Brain Research, 164, 185–193.CrossRefADSGoogle Scholar
  21. Vaitl D., Gruppe H., Stark R. and Pössel P., 1996, Simulated microgravity and cortical inhibition: a study of hemodynamic-brain interaction, Biological Psychology, 42, 87–103.CrossRefGoogle Scholar
  22. Verheyden B., Beckers F. and Aubert A.E., 2005, Spectral characteristics of herat rate fluctations during parabolic flights, Eur. J. Appl. Physiol., 95, 557–568.CrossRefGoogle Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Meike Wiedemann
    • 1
  • Florian P. M. Kohn
    • 1
  • Harald Roesner
    • 2
  • Wolfgang R. L. Hanke
    • 1
  1. 1.Department of Physiology (230)University of Hohenheim MembramephysiologyStuttgartGermany
  2. 2.Department of ZoologyUniversity of HohenheimStuttgartGermany

Personalised recommendations