Advertisement

Hardware Trojan Horses

  • Mohammad TehranipoorEmail author
  • Berk Sunar
Chapter
Part of the Information Security and Cryptography book series (ISC)

Abstract

Over the last two decades we have become dependent on a network of electronic devices that supports a plethora of services, ranging from delivery of entertainment and news to maintenance of business records to filing of legal forms. This network provides a robust platform to handle all kinds of sensitive information at the personal, corporate, or government levels. Furthermore, many physical systems, e.g., the power grid, are currently being connected and to some extent controlled by commands relayed over the very same network. In essence the network permeates and blends into the physical infrastructure.

Keywords

Finite State Machine Path Delay Covert Channel Physical Unclonable Function Original Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Farinaz Koushanfar of Rice University for her contribution to the Trojan detection part of the chapter.

References

  1. 1.
    M. Abramovici, P. Bradley, in Integrated Circuit Security - New Threats and Solutions. Proceedings of Cyber Security and Information Infrastructure Research Workshop (CSIIRW), (Oak Ridge National Laboratory, Oak Ridge, TN, USA, 2009)Google Scholar
  2. 2.
    S. Adee, The hunt for the kill switch. IEEE Spectrum 45(5), 34–39 (May 2008)CrossRefGoogle Scholar
  3. 3.
    D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, B. Sunar, in Trojan Detection Using IC Fingerprinting. Proceedings of the 2007 IEEE Symposium on Security and Privacy, Oakland, CA, USA, 20–23 May 2007, pp. 296–310Google Scholar
  4. 4.
    Y. Alkabani, F. Koushanfar, in Active Hardware Metering for Intellectual Property Protection and Security. USENIX Security Symposium, Boston, MA, USA, 6–10 August 2007, pp. 291–306Google Scholar
  5. 5.
    Y. Alkabani, F. Koushanfar, in Extended Abstract: Designer’s Hardware Trojan Horse. Proceedings of Hardware-Oriented Security and Trust 2008 (HOST), Anaheim, CA, USA, 13–14 June 2008, pp. 82–83Google Scholar
  6. 6.
    Y. Alkabani, F. Koushanfar, in Efficient Approximations for IC Trojan Detection. Proceedings of the International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 2–5 Nov 2009Google Scholar
  7. 7.
    M. Banga, M. Hsiao, in A Region Based Approach for the Identification of Hardware Trojans. Proceedings of Workshop on Hardware-Oriented Security and Trust (HOST), Anaheim, CA, USA, 13–14 June 2008, pp. 40–47Google Scholar
  8. 8.
    M. Banga, M. Hsiao, in Novel Sustained Vector Technique for the Detection of Hardware Trojans. Proceedings of the International Conference on VLSI Design, New Delhi, India, 5–9 Jan 2009 , pp. 327–332Google Scholar
  9. 9.
    M. Banga, M. Hsiao, in VITAMIN: Voltage Inversion Technique to Ascertain Malicious Insertion in ICs. Proceedings of Workshop on Hardware-Oriented Security and Trust (HOST), San Francisco, CA, USA, 27 July 2009, pp. 104–107Google Scholar
  10. 10.
    E. Biham, Y. Carmeli, A. Shamir, in Bug Attacks. Advances in Cryptology. Crypto. Lecture Notes in Computer Science, vol. 5157 (Springer, 2008), Santa Barbara, CA, USA, 17–21 Aug 2008, pp. 221–240Google Scholar
  11. 11.
    R.S. Chakraborty, S. Bhunia, in Hardware Protection and Authentication Through Netlist Level Obfuscation. Proceedings of the International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 10–13 Nov 2008, pp. 674–677Google Scholar
  12. 12.
    R.S. Chakraborty, S. Paul, S. Bhunia, in On-Demand Transparency for Improving Hardware Trojan Detectability. Workshop on Hardware-Oriented Security and Trust (HOST), Anaheim, CA, USA, 13–14 June 2008, pp. 48–50Google Scholar
  13. 13.
    R. Chakraborty, S. Bhunia, in Security Against Hardware Trojan Through a Novel Application of Design Obfuscation. Proceedings of the International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 2–5 Nov 2009, pp. 113–116Google Scholar
  14. 14.
    China virus found in Seagate drives in Taiwan: report Reuters News Agency, Nov 12, 2007. http://www.reuters.com/article/idUSTP20376020071112
  15. 15.
    DARPA TRUST Program Information, http://www.acq.osd.mil/dsb/reports/2005-02- HPMS_Report_Final.pdf
  16. 16.
    Defense Science Board Task Force, High Performance Microchip Supply, February 2005. http://www.acq.osd.mil/dsb/reports/2005-02-HPMS_Report_Final.pdf
  17. 17.
    Innovation at risk: Intellectual Property Challenges and Opportunities, Semiconductor Equipment and Materials Industry (SEMI), 2008.Google Scholar
  18. 18.
    S. Jha, S. K. Jha, in Randomization Based Probabilistic Approach to Detect Trojan Circuits. Proceedings of the IEEE High Assurance Systems Engineering Symposium, Nanjing, China, 3–5 Dec 2008, pp. 117–124Google Scholar
  19. 19.
    Y. Jin, N. Kupp, Y. Makris, in Experiences in Hardware Trojan Design and Implementation. Workshop on Hardware-Oriented Security and Trust (HOST), San Francisco, CA, USA, 27 June 2009, pp. 50–57Google Scholar
  20. 20.
    Y. Jin, Y. Makris, in Hardware Trojan Detection Using Path Delay Fingerprint. Proceedings of Hardware-Oriented Security and Trust (HOST), Anaheim, CA, USA, 13–14 June 2008Google Scholar
  21. 21.
    S. King, J. Tucek, A. Cozzieand C. Grier, W. Jiang, Y Zhou, in Designing and Implementing Malicious Hardware. Usenix Workshop on Large-Scale Exploits and Emergent Threats (LEET), San Francisco, CA, USA, 14 Apr 2008, pp. 1–8Google Scholar
  22. 22.
    J. Li, J. Lach, in At-Speed Delay Characterization for IC Authentication and Trojan Horse Detection. Proceedings of Workshop on Hardware-Oriented Security and Trust (HOST), Anaheim, CA, USA, 13–14 June 2008, pp. 8–14Google Scholar
  23. 23.
    J. Lieberman, Whitepaper on National Security Aspects of the Global Migration of the US Semiconductor Industry. http://lieberman.senate.gov/documents/whitepapers/ semicon-ductor.pdf; June 2003
  24. 24.
    M. Potkonjak, A. Nahapetian, M. Nelson, T. Massey, in Hardware Trojan Horse Detection Using Gate-Level Characterization. Design Automation Conference (DAC), San Francisco, CA, USA, 26–31 July 2009Google Scholar
  25. 25.
    R. Rad, X. Wang, J. Plusquellic, M. Tehranipoor, in Taxonomy of Trojans and Methods of Detection for IC Trust. Proceedings of the International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 10–13 Nov 2008Google Scholar
  26. 26.
    H. Salmani, M. Tehranipoor, J. Plusquellic, in New Design Strategy for Improving Hardware Trojan Detection and Reducing Trojan Activation Time. Workshop on Hardware-Oriented Security and Trust (HOST), San Francisco, CA, USA, 27 July 2009Google Scholar
  27. 27.
    M. Tehranipoor, F. Koushanfar, A Survey of Hardware Trojan Taxonomy and Detection. IEEE Design and Test of Computers, Jan/Feb 2010, pp. 10–25Google Scholar
  28. 28.
    X. Wang, H. Salmani, M. Tehranipoor, J. Plusquellic, in Hardware Trojan Detection and Isolation Using Current Integration and Localized Current Analysis. Proceedings of the International Symposium on Fault and Defect Tolerance in VLSI Systems (DFT), 2008Google Scholar
  29. 29.
    X. Wang, M. Tehranipoor, J. Plusquellic, in Detecting Malicious Inclusions in Secure Hardware: Challenges and Solutions. Proceedings of IEEE Intlernational Workshop on Hardware-Oriented Security and Trust (HOST), Anaheim, CA, USA, 13–14 June 2008, pp. 15–19Google Scholar
  30. 30.
    F. Wolff, C. Papachristou, S. Bhunia, R. Chakraborty, Towards Trojan Free Trusted ICs: Problem Analysis and Detection Scheme. Proceedings of Design, Automation and Test in Europe (DATE), Munich, Germany, 10–14 Mar 2008, pp. 1362–1365Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.University of ConnecticutStorrsUSA
  2. 2.Cryptography & Information SecurityWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations