Advertisement

Memory Leakage-Resilient Encryption Based on Physically Unclonable Functions

  • Frederik ArmknechtEmail author
  • Roel Maes
  • Ahmad-Reza Sadeghi
  • Berk Sunar
  • Pim Tuyls
Chapter
Part of the Information Security and Cryptography book series (ISC)

Abstract

Modern cryptography provides a variety of tools and methodologies to analyze and to prove the security of cryptographic schemes such as in [6–9]. These proofs always start from a particular setting with a well-defined adversary

Keywords

Encryption Scheme Block Cipher Stream Cipher Static Random Access Memory Pseudorandom Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Stefan Lucks for useful comments and discussions. The work of Berk Sunar was supported by the National Science Foundation Cybertrust grant No. CNS-0831416. The work of Roel Maes is funded by IWT-Flanders grant No. 71369 and is in part supported by the IAP Program P6/26 BCRYPT of the Belgian State and K.U.Leuven BOF funding (OT/06/04).

References

  1. 1.
    D. Agrawal, B. Archambeault, J.R. Rao, P. Rohatgi, in The Em Side-Channel(s), ed. by B.S. Kaliski Jr., C.K. Koç, C. Paar. CHES. Lecture Notes in Computer Science, vol. 2523 (Springer, Berlin, 2002), pp. 29–45Google Scholar
  2. 2.
    A. Akavia, S. Goldwasser, V. Vaikuntanathan, in Simultaneous Hardcore Bits and Cryptography Against Memory Attacks, ed. by O. Reingold. TCC. Lecture Notes in Computer Science, vol. 5444 (Springer, Berlin, Heidelberg, 2009), pp. 474–495Google Scholar
  3. 3.
    R.J. Anderson, M.G. Kuhn, in Low Cost Attacks on Tamper Resistant Devices. Proceedings of the 5th International Workshop on Security Protocols (Springer, London), pp. 125–136Google Scholar
  4. 4.
    M. Bellare, A. Desai, E. Jokipii, P. Rogaway, in A Concrete Security Treatment of Symmetric Encryption. FOCS ’97: Proceedings of the 38th Annual Symposium on Foundations of Computer Science (FOCS ’97) (IEEE Computer Society, Washington, DC, 1997), p. 394Google Scholar
  5. 5.
    M. Bellare, J. Kilian, P. Rogaway, in The Security of Cipher Block Chaining. CRYPTO ’94: Proceedings of the 14th Annual International Cryptology Conference on Advances in Cryptology (Springer, London, 1994), pp. 341–358Google Scholar
  6. 6.
    M. Bellare, D. Pointcheval, P. Rogaway, in Authenticated Key Exchange Secure Against Dictionary Attacks. EUROCRYPT (Springer, Berlin, 2000), pp. 139–155Google Scholar
  7. 7.
    M. Bellare, P, Rogaway, in Entity Authentication and Key Distribution. CRYPTO ’93: Proceedings of the 13th Annual International Cryptology Conference on Advances in Cryptology (Springer, London, 1994), pp. 232–249Google Scholar
  8. 8.
    M. Bellare, P. Rogaway, in Provably Secure Session Key Distribution: The Three Party Case. STOC ’95: Proceedings of the Twenty-seventh Annual ACM Symposium on Theory of Computing (ACM, New York, NY, 1995), pp. 57–66Google Scholar
  9. 9.
    R. Canetti, H. Krawczyk, in Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels. EUROCRYPT ’01: Proceedings of the International Conference on the Theory and Application of Cryptographic Techniques (Springer, London, 2001), pp. 453–474Google Scholar
  10. 10.
    N. Chandran, V. Goyal, A. Sahai, in New Constructions for UC Secure Computation Using Tamper-Proof Hardware. Advances in Cryptology – EUROCRYPT 2008 (Springer, Berlin, Heidelberg, 2008), pp. 545–562Google Scholar
  11. 11.
    B. Chor, O. Goldreich, Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    L. Daihyun, J.W. Lee, B. Gassend, G.E. Suh, M. van Dijk, S. Devadash, Extracting secret keys from integrated circuits. IEEE Trans. VLSI Syst. 13(10), 1200–1205 (Oct 2005)CrossRefGoogle Scholar
  13. 13.
    Y. Dodis, R. Ostrovsky, L. Reyzin, A. Smith, Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    S. Dziembowski, K. Pietrzak, in Leakage-Resilient Cryptography. FOCS ’08: Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer Science (IEEE Computer Society, Washington, DC, 2008), pp. 293–302Google Scholar
  15. 15.
    B. Gassend, D. Clarke, M. van Dijk, S. Devadas, in Controlled Physical Random Functions. Annual Computer Security Applications Conference — ACSAC 2002 (IEEE Computer Society, Washington, DC, 2002), pp. 149Google Scholar
  16. 12.
    B. Gassend, D. Clarke, M. van Dijk, S. Devadas, in Silicon Physical Unknown Functions. ed. by V. Atluri. ACM Conference on Computer and Communications Security — CCS 2002 (ACM, New York, NY), pp. 148–160Google Scholar
  17. 17.
    G. Gaubatz, B. Sunar, M. Karpovsky, in Non-linear Residue Codes for Robust Public-Key Arithmetic. Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC ’06), Yokohama, Japan, 2006Google Scholar
  18. 18.
    R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, T. Rabin, in Algorithmic Tamper-Proof (ATP) Security: Theoretical Foundations for Security Against Hardware Tampering. Theory of Cryptography Conference (TCC’04). Lecture Notes in Computer Science, vol. 2951 (Springer, Heidelberg, 2004), pp. 258–277Google Scholar
  19. 19.
    O. Goldreich, Foundations of Cryptography: Volume 1, Basic Tools (Cambridge University Press, New York, NY, 2001)CrossRefGoogle Scholar
  20. 20.
    O. Goldreich, S. Goldwasser, S. Micali, in On the Cryptographic Applications of Random Functions. Proceedings of CRYPTO 84 on Advances in Cryptology (Springer-Verlag New York, Inc., New York, NY, 1985), pp. 276–288Google Scholar
  21. 21.
    O. Goldreich, S. Goldwasser, S. Micali, How to construct random functions. J. ACM 33(4), 792–807 (1986)MathSciNetCrossRefGoogle Scholar
  22. 22.
    J. Guajardo, S. Kumar, G.-J. Schrijen, P. Tuyls, in FPGA Intrinsic PUFs and Their Use for IP Protection. ed. by P. Paillier, I. Verbauwhede. Cryptographic Hardware and Embedded Systems — CHES 2007, 10–13 Sept. Lecture Notes in Computer Science, vol. 4727 (Springer, Berlin, Heidelberg, 2007), pp. 63–80Google Scholar
  23. 23.
    J. Guajardo, S. Kumar, P. Tuyls, R. Maes, D. Schellekens, Reconfigurable Trusted Computing with Physical Unclonable Functions. June 2008Google Scholar
  24. 24.
    J.A. Halderman, S.D. Schoen, N. Heninger, W. Clarkson, W. Paul, J.A. Calandrino, A.J. Feldman, J. Appelbaum, E.W. Felten, in Lest We Remember: Cold Boot Attacks on Encryption Keys. ed. by P.C. van Oorschot. USENIX Security Symposium. (USENIX Association, Berkeley, CA, 2008), pp. 45–60Google Scholar
  25. 25.
    T. Ignatenko, F. Willems, in On the Security of the XOR-Method in Biometric Authentication Systems. Twenty-seventh Symposium on Information Theory in the Benelux, Noordwijk, The Netherlands, 2006, pp. 197–204Google Scholar
  26. 26.
    Y. Ishai, A. Sahai, D. Wagner, in Private Circuits: Securing Hardware Against Probing Attacks. CRYPTO, Santa Barbara, CA, 2003, pp. 463–481Google Scholar
  27. 27.
    M. Karpovsky, K. Kulikowski, A. Taubin, in Robust Protection Against Fault-Injection Attacks on Smart Cards Implementing the Advanced Encryption Standard.. Proceedings of the International Conference on Dependable Systems and Networks (DNS 2004), Florence, Italy, 28 June–1 July 2004Google Scholar
  28. 28.
    J. Katz, in Universally Composable Multi-Party Computation Using Tamper-Proof Hardware. Advances in Cryptology – EUROCRYPT, Barcelona, Spain, 20–24 May 2007 (Springer, 2007), pp. 115–128Google Scholar
  29. 29.
    P. Kocher, J. Jaffe, B. Jun, in Differential Power Analysis. Proc. of CYRPTO ’99 Santa Barbara, CA, USA, 15–19 Aug. Lecture Notes in Computer Science, vol. 1666 (Springer, 1999) pp. 388–397Google Scholar
  30. 30.
    P.C. Kocher, in Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. ed. by N. Koblitz. CRYPTO. Lecture Notes in Computer Science, vol. 1109 (Springer, London, 1996), pp. 104–113Google Scholar
  31. 31.
    S.S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, P. Tuyls, in The Butterfly PUF: Protecting IP on Every FPGA. IEEE International Workshop on Hardware-Oriented Security and Trust – HOST 2008, Anaheim, CA, USA, 9 Jun (IEEE, Piscataway, NJ, 2008)Google Scholar
  32. 32.
    K. Lemke, in Embedded Security: Physical Protection Against Tampering Attacks. ed. by C. Paar, K. Lemke, M. Wolf. Embedded Security in Cars,  Chapter 2 (Springer, Berlin, Heidelberg, 2006), pp. 207–217Google Scholar
  33. 33.
    M. Luby, Pseudo-Randomness and Applications (Princeton University Press, Princeton, NJ, 1996)Google Scholar
  34. 34.
    M. Luby, C. Rackoff, How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    U. Maurer, R. Renner, S. Wolf, in Security with Noisy Data, Part I (Springer, 2007), pp. 21–44Google Scholar
  36. 36.
    S. Micali, L. Reyzin, in Physically Observable Cryptography (Extended Abstract). ed by M. Naor. Theory of Cryptography, First Theory of Cryptography Conference, (TCC 2004), Cambridge, MA, USA, 19–21 Feb, Proceedings. Lecture Notes in Computer Science, vol. 2951 (Springer, 2004), pp. 278–296Google Scholar
  37. 37.
    T. Moran, G. Segev, in David and Goliath Commitments: UC Computation for Asymmetric Parties Using Tamper-Proof Hardware. Advances in Cryptology – EUROCRYPT, Istanbul, Turkey, 13-17 April 2008 (Springer, 2008), pp. 527–544Google Scholar
  38. 38.
    M. Naor, G. Segev, in Public-Key Cryptosystems Resilient to Key Leakage. Proceedings of the 29th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, CA, USA, 16–20 Aug 2009, Lecture Notes in Computer Science, vol. 5677 (Springer Verlag, Berlin, Heidelberg, New York, NY, 2009), pp. 18–35Google Scholar
  39. 39.
    N. Nisan, D. Zuckerman, in More Deterministic Simulation in Logspace. STOC ’93: Proceedings of the 25th Annual ACM Symposium on Theory of Computing (ACM, New York, NY, 1993), pp. 235–244Google Scholar
  40. 40.
    J. Patarin, V. Nachef, C. Berbain, in Generic Attacks on Unbalanced Feistel Schemes with Expanding Functions. ed by K. Kurosawa. Advances in Cryptology - ASIACRYPT 2007, 13th International Conference on the Theory and Application of Cryptology and Information Security, Kuching, Malaysia, 2–6, Dec 2007, Proceedings. Lecture Notes in Computer Science, vol. 4833 (Springer, 2007), pp. 325–341Google Scholar
  41. 41.
    K. Pietrzak, in A Leakage-Resilient Mode of Operation. ed. by A. Joux. EUROCRYPT, Cologne, Germany. Lecture Notes in Computer Science, vol. 5479 (Springer, Berlin, Heidelberg, 2009), pp. 462–482Google Scholar
  42. 42.
    R. Posch, Protecting devices by active coating. J. Univers. Comput. Sci. 4, 652–668 (1998)Google Scholar
  43. 43.
    O. Regev, in On Lattices, Learning with Errors, Random LOinear Codes, and Cryptography. Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93Google Scholar
  44. 44.
    D. Samyde, S. Skorobogatov, R. Anderson, J.-J. Quisquater, in On a New Way to Read Data from Memory. SISW ’02: Proceedings of the First International IEEE Security in Storage Workshop (IEEE Computer Society, Washington, DC, 2002), p. 65Google Scholar
  45. 45.
    S.P. Skorobogatov, in Data Remanence in Flash Memory Devices. ed. by J.R. Rao, B, Sunar. CHES. Lecture Notes in Computer Science, vol. 3659 (Springer, Heidelberg, 2005), pp. 339–353Google Scholar
  46. 46.
    S.W. Smith, Fairy dust, secrets, and the real world. IEEE Secur. Priv. 1(1), 89–93 (2003)CrossRefGoogle Scholar
  47. 47.
    F.-X. Standaert, T. Malkin, M. Yung, in A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks. EUROCRYPT, Cologne, Germany, 2009, pp. 443–461Google Scholar
  48. 48.
    G.E. Suh, S, Devadas, in Physical Unclonable Functions for Device Authentication and Secret Key Generation. Proceedings of the 44th Design Automation Conference, DAC 2007, San Diego, CA, USA, 4–8 June 2007 (ACM, New York, NY, 2007), pp. 9–14Google Scholar
  49. 49.
    P. Tuyls, G.-J. Schrijen, B. Škorić, J. van Geloven, N. Verhaegh, R. Wolters, in Read-Proof Hardware from Protective Coatings. ed. by L. Goubin, M. Matsui. Cryptographic Hardware and Embedded Systems — CHES 2006. Lecture Notes in Computer Science, vol. 4249 (Springer, Heidelberg, 10–13 Oct 2006), pp. 369–383Google Scholar
  50. 50.
    I. Verbauwhede, P. Schaumont, in Design Methods for Security and Trust. Proceedings of Design Automation and Test in Europe (DATE 2008), Nice, France, 2007, p. 6Google Scholar
  51. 51.
    S.H. Weingart, in Physical Security Devices for Computer Subsystems: A Survey of Attacks and Defences. CHES ’00: Proceedings of the Second International Workshop on Cryptographic Hardware and Embedded Systems (Springer, London, 2000), pp. 302–317Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Frederik Armknecht
    • 1
    • 2
    Email author
  • Roel Maes
    • 3
  • Ahmad-Reza Sadeghi
    • 1
  • Berk Sunar
    • 4
  • Pim Tuyls
    • 5
    • 6
  1. 1.Horst Görtz Institute for IT SecurityRuhr-University BochumBochumGermany
  2. 2.Technische Universität DarmstadtDarmstadtGermany
  3. 3.ESAT/COSIC and IBBTCatholic University of LeuvenLeuvenBelgium
  4. 4.Cryptography & Information SecurityWorcester Polytechnic InstituteWorcesterUSA
  5. 5.Intrinsic-ID EindhovenEindhovenThe Netherlands
  6. 6.ESAT/COSIC and IBBTCatholic University of LeuvenLeuvenBelgium

Personalised recommendations