From Statistics to Circuits: Foundations for Future Physical Unclonable Functions

  • Inyoung KimEmail author
  • Abhranil Maiti
  • Leyla Nazhandali
  • Patrick Schaumont
  • Vignesh Vivekraja
  • Huaiye Zhang
Part of the Information Security and Cryptography book series (ISC)


Identity is an essential ingredient in secure protocols. Indeed, if we can no longer distinguish Alice from Bob, there is no point in doing a key exchange or in verifying their signatures. A human Alice and a human Bob identify one another based on looks, voice, or gestures.


Ring Oscillator Trusted Platform Module CMOS Circuit Physical Unclonable Function Body Bias 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by the Institute for Critical Technology and Applied Science (ICTAS) and the National Science Foundation with grant no. CNS-0964680.


  1. 1.
    Trusted Computing Group, TCG Trusted Network Connect - Federated TNC, 2009. revision_26
  2. 2.
    D.D. Hwang, P. Schaumont, K. Tiri, I. Verbauwhede, Securing embedded systems. IEEE Security and Privacy, 4(2), 40–49 (2006)CrossRefGoogle Scholar
  3. 3.
    P.H. Kvam, B. Vidakovic, Nonparametric Statistics with Applications to Science and Engineering (Wiley-Interscience, Hoboken, NJ, 2007)zbMATHCrossRefGoogle Scholar
  4. 4.
    Y. Dodis, L. Reyzin, A. Smith, in Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. Proceedings of EUROCRYPT’04 on Advances in Cryptology, Lecture Notes in Computer Science, vol. 3027 (Springer, Berlin, Heidelberg, 2004), pp. 523–540Google Scholar
  5. 5.
    P. Tuyls, B. Skoric, T. Kevenaar, Security with Noisy Data: Private Biometrics, Secure Key Storage and Anti-Counterfeiting (Springer-Verlag New York, Inc., Secaucus, NJ, 2007)zbMATHCrossRefGoogle Scholar
  6. 6.
    R. Maes, P. Tuyls, I. Verbauwhede, in Low-Overhead Implementation of a Soft Decision Helper Data Algorithm for SRAM PUFs. Cryptographic Hardware and Embedded Systems - CHES 2009, Lausanne, Switzerland, 6–9 Sept 2009 (Springer Verlag, Berlin, Heidelberg, New York)Google Scholar
  7. 7.
    C. Bösch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi, P. Tuyls, in Efficient Helper Data Key Extractor on FPGAs. Cryptographic Hardware and Embedded Systems - CHES 2008, Washington, DC, USA, 10–13 Aug 2008 (Springer Verlag, Berlin, Heidelberg, New York) pp. 181–197Google Scholar
  8. 8.
    Y. Su, J. Holleman, B. Otis, in A 1.6pj/bit 96% Stable Chip-ID Generating Circuit Using Process Variations. Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International, Feb 2007, pp. 406–611Google Scholar
  9. 9.
    S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, P. Tuyls, in Extended Abstract: The Butterfly PUF Protecting IP on Every FPGA. IEEE International Workshop on Hardware-Oriented Security and Trust, 2008. HOST 2008, Anaheim, CA, USA, 9 June, 2008, pp. 67–70Google Scholar
  10. 10.
    D.E. Holcomb, W.P. Burleson, K. Fu, Power-up SRAM state as an identifying fingerprint and source of true random numbers. IEEE Trans. Comput. 58(9), 1198–1210 (Sept 2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    G.E. Suh S. Devadas, in Physical Unclonable Functions for Device Authentication and Secret Key Generation. DAC ’07: Proceedings of the 44th Annual Design Automation Conference (ACM, New York, NY, 2007), pp. 9–14Google Scholar
  12. 12.
    E. Ozturk, G. Hammouri, B. Sunar, in Physical Unclonable Function with Tristate Buffers. IEEE International Symposium on Circuits and Systems, 2008 (ISCAS 2008), Seattle, WA, 18–21 May 2008 (IEEE, Piscataway, NJ, 2008), pp. 3194–3197Google Scholar
  13. 13.
    D. Lim, J. Lee, B. Gassend, G. Suh, M. van Dijk, S. Devadas, Extracting secret keys from integrated circuits. IEEE Trans. VLSI Syst. 13(10), 1200–1205 (Oct 2005)CrossRefGoogle Scholar
  14. 14.
    R. Helinski, J. Plusquellic, Measuring power distribution system resistance variations. IEEE Trans. Semicond. Manuf. 21(3), 444–453 (Aug 2008)CrossRefGoogle Scholar
  15. 15.
    R. Helsinki, D. Acharyya, J. Plusquellic, in A Physical Unclonable Function Defined Using Power Distribution System Equivalent Resistance Variations. Proceedings of the 46th Design Automation Conference (DAC ’09), San Francisco, CA, USA (ACM, New York, NY, 2009), pp. 676–681Google Scholar
  16. 16.
    M. Majzoobi, F. Koushanfar, M. Potkonjak, Techniques for design and implementation of secure reconfigurable PUFs. ACM Trans. Reconfigurable Technol. Syst. 2(1), 1–33 (2009)CrossRefGoogle Scholar
  17. 17.
    R. Pappu, B. Recht, J. Taylor, N. Gershenfeld, Physical one-way functions. Science 297(5589), 2026–2030 (2002)CrossRefGoogle Scholar
  18. 18.
    J.D.R. Buchanan, R.P. Cowburn, A.V. Jausovec, D. Petit, P. Seem, G. Xiong, D. Atkinson, K. Fenton, D.A. Allwood, M.T. Bryan, Forgery: ‘fingerprinting’ documents and packaging. Nature 436(7050), 475–475 (2005)CrossRefGoogle Scholar
  19. 19.
    G. Hammouri, A. Dana, B. Sunar, in CDs Have Fingerprints Too. Cryptographic Hardware and Embedded Systems - CHES 2009 (Springer, Heidelberg, 2009), pp. 348–362Google Scholar
  20. 20.
    G. DeJean, D. Krovski, in RF-DNA: Radio-Frequency Certificates of Authenticity. Cryptographic Hardware and Embedded Systems - CHES 2007 (Springer, Heidelberg, 2007), pp. 346–363Google Scholar
  21. 21.
    F. Kousanfar, A. Candore, O. Kocabas, in Robust Stable Radiometric Fingerprinting for Wireless Devices. IEEE International Workshop on Hardware Oriented Security and Trust 2009 (HOST 2009), San Francisco, CA, USA, July 2009, pp. 43–49Google Scholar
  22. 22.
    S. Jana, S.P. Nandha, M. Clark, S.K. Kasera, N. Patwari, S. Krishnamurty, in On the Effectiveness of Secret Key Extraction Using Wireless Signal Strength in Real Environments.. Proceedings of the ACM Sigmobile International Conference on Mobile Computing and Networking (MOBICOM), Beijing, 20–25 September 2009Google Scholar
  23. 23.
    B. Skoric, S. Maubach, T. Kevenaar, P. Tuyls, Information-theoretic analysis of capacitive physical unclonable functions. J. Appl. Phys. 100(2), 024902 (2006).CrossRefGoogle Scholar
  24. 24.
    B. Skoric, G.-J. Schrijen, W. Ophey, R. Wolters, N. Verhaegh, J. van Geloven, Experimental hardware for coating PUFs and optical PUFs. in Security with Noise Data, ed. by P. Tuyls, B. Skoric, T. Kevenaar (Springer, New York, NY, 2008)Google Scholar
  25. 25.
    P. Gupta, A.B. Kahng, in Manufacturing-Aware Physical Design. ICCAD ’03: Proceedings of the 2003 IEEE/ACM International Conference on Computer-Aided Design (IEEE Computer Society, Washington, DC, 2003), p. 681Google Scholar
  26. 26.
    N. Shah, R. Samanta, M. Zhang, J. Hu, D. Walker, in Built-In Proactive Tuning System for Circuit Aging Resilience. IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems, Cambridge, MA, USA, 1–3 October 2008, pp. 96–104Google Scholar
  27. 27.
    P. Lee, M. Kuo, P. Ko, C. Hu, BERT - Circuit Aging Simulator (CAS). Technical Report UCB/ERL M90/2, EECS Department, University of California, Berkeley, 1990Google Scholar
  28. 28.
    W. Wang, V. Reddy, B. Yang, V. Balakrishnan, S. Krishnan, Y. Cao, in Statistical Prediction of Circuit Aging Under Process Variations. Custom Integrated Circuits Conference, 2008. CICC 2008. (IEEE, Piscataway, NJ, Sept 2008), pp. 13–16Google Scholar
  29. 29.
    UMC Foundry, Accessed 11/2009
  30. 30.
    A. Wang, A. Chandrakasan, A 180-mv subthreshold FFT processor using a minimum energy design methodology. IEEE J. Solid-State Circuits 40(1), 310–319 (Jan 2005)CrossRefGoogle Scholar
  31. 31.
    V. Sze, R. Blazquez, M. Bhardwaj, A. Chandrakasan, in An Energy Efficient Sub-Threshold Baseband Processor Architecture for Pulsed Ultra-Wideband Communications. Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on, vol. 3, Toulouse, 2006Google Scholar
  32. 32.
    C.H.I. Kim, H. Soeleman, K. Roy, Ultra-low-power DLMS adaptive filter for hearing aid applications. IEEE Trans.VLSI Syst. 11(6), 1058–1067 (Dec 2003)CrossRefGoogle Scholar
  33. 33.
    J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chandrakasan, V. De, in Adaptive Body Bias for Reducing Impacts of Die-to-Die and Within-Die Parameter Variations on Microprocessor Frequency and Leakage. Solid-State Circuits Conference, 2002. Digest of Technical Papers. ISSCC. 2002 IEEE International, vol. 1, San Francisco, CA, USA, 2002, pp. 422–478Google Scholar
  34. 34.
    C.E. Yin, G. Qu, in Temperature-Aware Cooperative Ring Oscillator PUF. IEEE International Workshop on Hardware-Oriented Security and Trust, 2009. HOST ’09, San Francisco, CA, USA, July 2009, pp. 36–42Google Scholar
  35. 35.
    A. Maiti, P. Schaumont, in Improving the Quality of a Physical Unclonable Function Using Configurable Ring Oscillators. 19th International Conference on Field Programmable Logic and Applications (FPL 2009), 2009Google Scholar
  36. 36.
    H. Yu, P.H.W. Leong, M. Glesner, H. Hinkelmann, L. Moller, P. Zipf, in Towards a Unique FPGA-Based Identification Circuit Using Process Variations. Proceedings of the 19th International Conference on Field Programmable Logic and Applications 2009 (FPL09), September 2009Google Scholar
  37. 37.
    B. Efron, R.J. Tibshirani, An Introduction to the Bootstrap (Chapman & Hall, London, England, 1993)zbMATHGoogle Scholar
  38. 38.
    I.M. Chakravarti, R.G. Laha, J. Roy. Handbook of Methods of Applied Statistics, vol. I (Wiley, New York, NY, 1967), pp. 392–394zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Inyoung Kim
    • 1
    Email author
  • Abhranil Maiti
    • 2
  • Leyla Nazhandali
    • 2
  • Patrick Schaumont
    • 2
  • Vignesh Vivekraja
    • 2
  • Huaiye Zhang
    • 1
  1. 1.Statistics DepartmentVirginia TechBlacksburgUSA
  2. 2.ECE DepartmentVirginia TechBlacksburgUSA

Personalised recommendations