Advertisement

Physically Unclonable Functions: A Study on the State of the Art and Future Research Directions

  • Roel MaesEmail author
  • Ingrid Verbauwhede
Chapter
Part of the Information Security and Cryptography book series (ISC)

Abstract

The idea of using intrinsic random physical features to identify objects, systems, and people is not new. Fingerprint identification of humans dates at least back to the nineteenth century [21] and led to the field of biometrics. In the 1980s and 1990s of the twentieth century, random patterns in paper and optical tokens were used for unique identification of currency notes and strategic arms [2, 8, 53]. A formalization of this concept was introduced in the very beginning of the twenty-first century, first as physical one-way functions [41, 42], physical random functions [13], and finally as physical(ly) unclonable functions or PUFs.1 In the years following this introduction, an increasing number of new types of PUFs were proposed, with a tendency toward more integrated constructions. The practical relevance of PUFs for security applications was recognized from the start, with a special focus on the promising properties of physical unclonability and tamper evidence.

Keywords

SRAM Cell Switch Block True Random Number Generator Entropy Content Acoustical Delay Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Armknecht, R. Maes, A.R. Sadeghi, B. Sunar, P. Tuyls, Memory leakage-resilient encryption based on physically unclonable functions, in Advances in Cryptology - ASIACRYPT 2009, ed. by M. Matsui. Proceedings of the15th International Conference on the Theory and Application of Cryptology and Information Security, Tokyo, Japan. Lecture Notes in Computer Science, vol. 5912 (Springer, Berlin, Heidelberg, 2009), pp. 685–702CrossRefGoogle Scholar
  2. 2.
    D. Bauder, An Anti-counterfeiting Concept for Currency Systems. Technical Report PTK-11990, Sandia National Labs, Albuquerque, NM, 1983Google Scholar
  3. 3.
    N. Beckmann, M. Potkonjak, Hardware-based public-key cryptography with public physically unclonable functions, 2009, pp. 206–220Google Scholar
  4. 4.
    C. Bösch, J. Guajardo, A.R. Sadeghi, J. Shokrollahi, P. Tuyls, in Efficient Helper Data Key Extractor on FPGA. CHES, 10–13 August 2008 Washington, DC, USA, 2008, pp. 181–197Google Scholar
  5. 5.
    J. Bringer, H. Chabanne, T. Icart, in On physical Obfuscation of Cryptographic Algorithms. INDOCRYPT ’09: Proceedings of the 10th International Conference on Cryptology in India, New Delhi, India (Springer, Berlin, Heidelberg, 2009), pp. 88–103Google Scholar
  6. 6.
    J.D.R. Buchanan, R.P. Cowburn, A.V. Jausovec, D. Petit, P. Seem, G. Xiong, D. Atkinson, K. Fenton, D.A. Allwood, M.T. Bryan, Forgery: ‘fingerprinting’ documents and packaging. Nature 436(7050), 475 (2005)CrossRefGoogle Scholar
  7. 7.
    P. Bulens, F.X. Standaert, J.J. Quisquater, How to Strongly Link Data and Its Medium: The Paper Case. IET Information Security (to appear) (2010). http://www.dice.ucl.be/∼ fstandae/PUBLIS/72.pdf
  8. 8.
    Commission on Engineering and Technical Systems (CETS), Counterfeit Deterrent Features for the Next-Generation Currency Design, Appendix E (The National Academic Press, Washington, DC, 1993)Google Scholar
  9. 9.
    G. Dejean, D. Kirovski, in RF-DNA: Radio-Frequency Certificates of Authenticity. CHES ’07: Proceedings of the 9th International Workshop on Cryptographic Hardware and Embedded Systems, Vienna, Austria, 10–13 September 2007 (Springer, Berlin, Heidelberg 2007), pp. 346–363Google Scholar
  10. 10.
    Y. Dodis, R. Ostrovsky, L. Reyzin, A. Smith, Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    B. Gassend, Physical Random Functions. Master’s thesis, MIT, MA, USA, 2003Google Scholar
  12. 12.
    B. Gassend, D. Clarke, M. van Dijk, S. Devadas, in Controlled Physical Random Functions. ACSAC ’02: Proceedings of the 18th Annual Computer Security Applications Conference (IEEE Computer Society, Washington, DC, 2002), p. 149Google Scholar
  13. 13.
    B. Gassend, D. Clarke, M. van Dijk, S. Devadas, in Silicon Physical Random Functions. ACM Conference on Computer and Communications Security (ACM Press, New York, NY 2002), pp. 148–160Google Scholar
  14. 14.
    B. Gassend, D. Lim, D. Clarke, M. van Dijk, S. Devadas, Identification and authentication of integrated circuits: Research articles. Concurr. Comput.: Pract. Exper. 16(11), 1077–1098 (2004)CrossRefGoogle Scholar
  15. 15.
    J. Guajardo, S.S. Kumar, G.J. Schrijen, P. Tuyls, in FPGA Intrinsic PUFs and Their Use for IP Protection. Cryptographic Hardware and Embedded Systems Workshop. Lecture Notes in Computer Science, vol. 4727 (Springer, Heidelberg, 2007), pp. 63–80Google Scholar
  16. 16.
    J. Guajardo, S.S. Kumar, G.J. Schrijen, P. Tuyls, in Physical Unclonable Functions and Public-Key Crypto for FPGA IP Protection. International Conference on Field Programmable Logic and Applications, 27–30 Aug 2007 (IEEE, Piscataway, NJ, 2007), pp. 189–195Google Scholar
  17. 17.
    J. Guajardo, B. Škorić, P. Tuyls, S.S. Kumar, T. Bel, A.H. Blom, G.J. Schrijen, Anti-counterfeiting, key distribution, and key storage in an ambient world via physical unclonable functions. Inf. Syst. Front. 11(1), 19–41 (2009)CrossRefGoogle Scholar
  18. 18.
    G. Hammouri, A. Dana, B. Sunar, in CDs Have Fingerprints Too. CHES ’09: Proceedings of the 11th International Workshop on Cryptographic Hardware and Embedded Systems (Springer, Berlin, Heidelberg, 2009), pp. 348–362Google Scholar
  19. 19.
    G. Hammouri, E. Öztürk, B. Birand, B. Sunar, in Unclonable Lightweight Authentication Scheme. Proceedings of the 10th International Conference on Information and Communications Security (ICICS 2008) (Springer, Heidelberg, 2008), pp. 33–48Google Scholar
  20. 20.
    R. Helinski, D. Acharyya, J. Plusquellic, in A Physical Unclonable Function Defined Using Power Distribution System Equivalent Resistance Variations. DAC ’09: Proceedings of the 46th Annual Design Automation Conference (ACM, New York, NY, 2009), pp. 676–681Google Scholar
  21. 21.
    Sir W.J. Herschel, The Origin of Finger-Printing (Oxford University Press, London, 1916)Google Scholar
  22. 22.
    D.E. Holcomb, W.P. Burleson, K. Fu, in Initial SRAM State as a Fingerprint and Source of True Random Numbers for RFID Tags.. Proceedings of the Conference on RFID Security, Malaga, Spain, 11–13 July 2007Google Scholar
  23. 23.
    D.E. Holcomb, W.P. Burleson, K. Fu, Power-up SRAM state as an identifying fingerprint and source of true random numbers. IEEE Trans. Comput. 58(9), 1198–1210 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    N. Hopper, M. Blum, A Secure Human-Computer Authentication Scheme. Technical Report CMU-CS-00-139, Carnegie Mellon University, 2000Google Scholar
  25. 25.
    T. Ignatenko, G.J. Schrijen, B. Škorić, P. Tuyls, F.M.J. Willems, in Estimating the Secrecy Rate of Physical Unclonable Functions with the Context-Tree Weighting Method. Proceedings of the IEEE International Symposium on Information Theory, Seattle, WA, USA, 9–14 July 2006, pp. 499–503Google Scholar
  26. 26.
    R.S. Indeck, M.W. Muller, Method and apparatus for fingerprinting magnetic media . U.S. Patent No. 5365586, 1994Google Scholar
  27. 27.
    M.S. Kirkpatrick, E. Bertino, in Software Techniques to Combat Drift in PUF-Based Authentication Systems. Workshop on Secure Component and System Identification (SECSI 2010), Cologne, Germany, 2010, p. 9Google Scholar
  28. 28.
    S. Kumar, J. Guajardo, R. Maes, G.J. Schrijen, P. Tuyls, in Extended Abstract: The Butterfly PUF Protecting IP on Every FPGA. IEEE International Workshop on Hardware-Oriented Security and Trust, 2008, HOST 2008, Anaheim, CA, USA, 2008, pp. 67–70Google Scholar
  29. 29.
    K. Kursawe, A.R. Sadeghi, D. Schellekens, P. Tuyls, B. Škorić, in Reconfigurable Physical Unclonable Functions – Enabling Technology for Tamper-Resistant Storage. 2nd IEEE International Workshop on Hardware-Oriented Security and Trust - HOST 2009, San Francisco, CA, USA (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 22–29Google Scholar
  30. 30.
    J.W. Lee, D. Lim, B. Gassend, G.E. Suh, M. van Dijk, S. Devadas, in A Technique to Build a Secret Key in Integrated Circuits for Identification and Authentication Application. Proceedings of the Symposium on VLSI Circuits, 2004, pp. 176–159Google Scholar
  31. 31.
    D. Lim, Extracting Secret Keys from Integrated Circuits. Master’s thesis, MIT, MA, USA, 2004Google Scholar
  32. 32.
    K. Lofstrom, W.R. Daasch, D. Taylor, in IC Identification Circuit Using Device Mismatch. Proceedings of ISSCC 2000, 2000, pp. 372–373Google Scholar
  33. 33.
    R. Maes, P. Tuyls, I. Verbauwhede, in Intrinsic PUFs from Flip-Flops on Reconfigurable Devices. 3rd Benelux Workshop on Information and System Security (WISSec 2008), Eindhoven, the Netherlands, 2008Google Scholar
  34. 34.
    R. Maes, P. Tuyls, I. Verbauwhede, in Statistical Analysis of Silicon PUF Responses for Device Identification. Workshop on Secure Component and System Identification (SECSI 2008), Berlin, Germany, 2008Google Scholar
  35. 35.
    R. Maes, P. Tuyls, I. Verbauwhede, in Low-Overhead Implementation of a Soft Decision Helper Data Algorithm for SRAM PUFs. CHES ’09: Proceedings of the 11th International Workshop on Cryptographic Hardware and Embedded Systems (Springer, Berlin, Heidelberg 2009), pp. 332–347.Google Scholar
  36. 36.
    MagneTek(R), MagnePrint(R). http://www.magneprint.com/
  37. 37.
    M. Majzoobi, F. Koushanfar, M. Potkonjak, in Testing Techniques for Hardware Security. IEEE International Test Conference (ITC 2008), Santa Clara, CA, USA, 28–30 Oct 2008 pp. 1–10Google Scholar
  38. 38.
    M. Majzoobi, F. Koushanfar, M. Potkonjak, Techniques for design and implementation of secure reconfigurable PUFs. ACM Trans. Reconfigurable Technol. Syst. 2(1), 1–33 (2009)CrossRefGoogle Scholar
  39. 39.
    E. Ozturk, G. Hammouri, B. Sunar, in Physical Unclonable Function with Tristate Buffers. IEEE International Symposium on Circuits and Systems (ISCAS 2008), Seattle, WA, USA (IEEE, Washington, DC, 2008), pp. 3194–3197Google Scholar
  40. 40.
    E. Öztürk, G. Hammouri, B. Sunar, in Towards Robust Low Cost Authentication for Pervasive Devices. PERCOM ’08: Proceedings of the 2008 Sixth Annual IEEE International Conference on Pervasive Computing and Communications (IEEE Computer Society, Washington, DC, 2008), pp. 170–178Google Scholar
  41. 41.
    R.S. Pappu, Physical One-Way Functions. Ph.D. thesis, Massachusetts Institute of Technology, 2001Google Scholar
  42. 42.
    R.S. Pappu, B. Recht, J. Taylor, N. Gershenfeld, Physical one-way functions. Science 297, 2026–2030 (2002)CrossRefGoogle Scholar
  43. 43.
    K. Pietrzak, in Provable Security for Physical Cryptography. Survey talk at WEWORC’09, Graz, Austria, 7–9 July 2009Google Scholar
  44. 44.
    U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, J. Schmidhuber, Modeling Attacks on Physical Unclonable Functions. Cryptology ePrint Archive, Report 2010/251, 2010. http://eprint.iacr.org/
  45. 45.
    U. Rührmair, Simpl Systems: On a Public Key Variant of Physical Unclonable Functions. Cryptology ePrint Archive, Report 2009/255, 2009Google Scholar
  46. 46.
    U. Rührmair, Q. Chen, P. Lugli, U. Schlichtmann, G.C. Martin Stutzmann, Towards Electrical, Integrated Implementations of SIMPL Systems. Cryptology ePrint Archive, Report 2009/278, 2009Google Scholar
  47. 47.
    U. Rührmair, J. Sölter, F. Sehnke, On the Foundations of Physical Unclonable Functions. Cryptology ePrint Archive, Report 2009/277, 2009Google Scholar
  48. 48.
    A. Rukhin, J. Soto, J. Nechvatal, E. Barker, S. Leigh, M. Levenson, D. Banks, A. Heckert, J. Dray, S. Vo, M. Smid, M. Vangel, A. Heckert, J. Dray, L.E.B. Iii, A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. NIST Special Publication 800-22, 2001Google Scholar
  49. 49.
    B. Škorić, Quantum Readout of Physical Unclonable Functions: Remote Authentication Without Trusted Readers and Authenticated Quantum Key Exchange Without Initial Shared Secrets. Cryptology ePrint Archive, Report 2009/369, 2009Google Scholar
  50. 50.
    B. Škorić, M.X. Makkes, Flowchart Description of Security Primitives for Controlled Physical Unclonable Functions. Cryptology ePrint Archive, Report 2009/328, 2009Google Scholar
  51. 51.
    Y. Su, J. Holleman, B. Otis, in A 1.6pj/bit 96% Stable Chip-ID Generating Circuit Using Process Variations. IEEE International Solid-State Circuits Conference, ISSCC 2007. Digest of Technical Papers (IEEE Computer Society, Washington, DC, 2007), pp. 406–611Google Scholar
  52. 52.
    G.E. Suh, S. Devadas, in Physical Unclonable Functions for Device Authentication and Secret Key Generation. Design Automation Conference (ACM Press, New York, NY, 2007), pp. 9–14Google Scholar
  53. 53.
    K. Tolk, Reflective Particle Technology for Identification of Critical Components. Technical Report SAND-92-1676C, Sandia National Labs, Albuquerque, NM, 1992Google Scholar
  54. 54.
    P. Tuyls, G.J. Schrijen, B. Škorić, J. van Geloven, N. Verhaegh, R. Wolters, in Read-Proof Hardware from Protective Coatings. Cryptographic Hardware and Embedded Systems Workshop. Lecture Notes in Computer Science, vol. 4249 (Springer, New York, NY, 2006), pp. 369–383Google Scholar
  55. 55.
    P. Tuyls, B. Škorić, in Physical Unclonable Functions for Enhanced Security of Tokens and Tags. ISSE 2006 – Securing Electronic Business Processes, Rome, Italy, 10–12 Oct 2006, pp. 30–37Google Scholar
  56. 56.
    P. Tuyls, B. Škorić, S. Stallinga, A.H.M. Akkermans, W. Ophey, in Information-Theoretic Security Analysis of Physical Unclonable Functions. Financial Cryptography and Data Security, Roseau, Dominica, 28 Feb–3 Mar 2005, pp. 141–155Google Scholar
  57. 57.
    V. Vivekraja, L. Nazhandali, in Circuit-Level Techniques for Reliable Physically Unclonable Functions. HOST ’09: Proceedings of the 2009 IEEE International Workshop on Hardware-Oriented Security and Trust, San Francisco, CA, USA, 27 July 2009, pp. 30–35Google Scholar
  58. 58.
    S. Vrijaldenhoven, Acoustical Physical Uncloneable Functions. Master’s thesis, Technische Universiteit Eindhoven, the Netherlands, 2005Google Scholar
  59. 59.
    B. Škorić, S. Maubach, T. Kevenaar, P. Tuyls, Information-theoretic analysis of capacitive physical unclonable functions. J. Appl. Phys. 100(2), 024902 (2006)CrossRefGoogle Scholar
  60. 60.
    B. Škorić, P. Tuyls, W. Ophey, in Robust Key Extraction from Physical Unclonable Functions. Applied Cryptography and Network Security (ACNS) 2005, New York, NY, USA. Lecture Notes in Computer Science, vol. 3531 (Springer, Berlin, 2005), pp. 407–422Google Scholar
  61. 61.
    F.M.J. Willems, Y.M. Shtarkov, T.J. Tjalkens, The context tree weighting method: Basic properties. IEEE Trans. Inf. Theory 41, 653–664 (1995)zbMATHCrossRefGoogle Scholar
  62. 62.
    C.E. Yin, G. Qu, in Temperature-Aware Cooperative Ring Oscillator PUF. HOST ’09: Proceedings of the 2009 IEEE International Workshop on Hardware-Oriented Security and Trust (IEEE Computer Society, Washington, DC, 2009), pp. 36–42Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.K.U. Leuven, ESAT/COSIC and IBBTLeuvenBelgium
  2. 2.ESAT-COSIC, Katholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations