Skip to main content

Pseudorandomness In Computer Science and In Additive Combinatorics

  • Chapter
An Irregular Mind

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 21))

Abstract

Dedicated to Endre Szemeré;di on the occasion of his 70th birthday Notions of pseudorandomness and (implicitly) of indistinguishability arise in several key results in additive combinatorics. In this expository paper, we show how several results can be translated from the analytic language of norms, decompositions, and transference to the computer science language of indistinguishability, simulability and pseudoentropy. Some of these results, once so reformulated, can be given “computer science proofs” which are quantitatively better in some respects, and which have some applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sanjeev Arora and Boaz Barak, Computational Complexity: A Modern Approach, Cambridge University Press, 2009.

    Google Scholar 

  2. Noga Alon, Eldar Fischer, Michael Krivelevich and Mario Szegedy, Efficient testing of large graphs, Combinatorica, 20(4) (2000), 451–476.

    Article  MATH  MathSciNet  Google Scholar 

  3. Manuel Blum and Silvio Micali, How to generate cryptographically strong sequences of pseudorandom bits, SIAM Journal on Computing, 13(4) (1984), 850–864. Preliminary version in Proc. of FOCS’82.

    Article  MATH  MathSciNet  Google Scholar 

  4. Boaz Barak, Ronen Shaltiel and Avi Wigderson, Computational analogues of entropy, in: Proceedings of RANDOM’ 03, 2003, pages 200–215.

    Google Scholar 

  5. Vitaly Bergelson, Terence Tao and Tamar Ziegler, An inverse theorem for the uniformity seminorms associated with the action of fw, arXiv:0901.2602, 2009.

    Google Scholar 

  6. Fan R. K. Chung, Ronald L. Graham and Richard M. Wilson, Quasi-random graphs, Combinatorica, 9(4) (1989), 345–362.

    Article  MATH  MathSciNet  Google Scholar 

  7. Stefan Dziembowski and Krzysztof Pietrzak, Leakage-resilient cryptography, in: Proceedings of the 49th IEEE Symposium on Foundations of Computer Science, 2008, pages 293–302.

    Google Scholar 

  8. Alan M. Frieze and Ravi Kannan, Quick approximation to matrices and applications, Combinatorica, 19(2) (1999), 175–220.

    Article  MATH  MathSciNet  Google Scholar 

  9. Oded Goldreich, Shaft Goldwasser and Dana Ron, Property testing and its connection to learning and approximation, Journal of the ACM, 45(4) (1998), 653–750.

    Article  MATH  MathSciNet  Google Scholar 

  10. Shafi Goldwasser and Silvio Micali, Probabilistic encryption, Journal of Computer and System Sciences, 28(2) (1984), 270–299. Preliminary Version in Proc. of STOC’82.

    Article  MATH  MathSciNet  Google Scholar 

  11. Shaft Goldwasser, Silvio Micali and Charles Rackof, The knowledge complexity of interactive proof systems, SIAM Journal on Computing, 18(1) (1989), 186–208. Preliminary version in Proc of S TOC’85.

    Article  MATH  MathSciNet  Google Scholar 

  12. Oded Goldreich, S. Micali and A. Wigderson, How to play any metal game, in: Proceedings of 19th Symposium on Theory of Computing, 1987, pages 218–229.

    Google Scholar 

  13. Oded Goldreich, Modern Cryptography, Probabilistic Proofs and Pseudorandomness, Springer-Verlag, 1999.

    Google Scholar 

  14. Timothy Gowers, Lower bounds of tower type for Szemerédi’s uniformity lemma, Geometric and Functional Analysis, 7(2) (1997), 322–337.

    Article  MATH  MathSciNet  Google Scholar 

  15. Timothy Gowers, A new proof of Szeméredi’s theorem for progressions of length four, Geometric and Functional Analysis, 8(3) (1998), 529–551.

    Article  MATH  MathSciNet  Google Scholar 

  16. Timothy Gowers, A new proof of Szeméredi’s theorem, Geometric and Functional Analysis, 11(3) (2001), 465–588.

    Article  MATH  MathSciNet  Google Scholar 

  17. Timothy Gowers, Decompositions, approximate structure, transference, and the Hahn-Banach theorem, arXiv:0811.3103, 2008.

    Google Scholar 

  18. Ben Green and Terence Tao, An inverse theorem for the Gowers U3 norm, math.NT/0503014, 2005.

    Google Scholar 

  19. Ben Green and Terence Tao, The distribution of polynomials over finite fields, with applications to the Gowers norms, arXiv:0711.3191, 2007.

    Google Scholar 

  20. Ben Green and Terence Tao, The primes contain arbitrarily long arithmetic progressions, Annals of Mathematics, 167 (2008), 481–547.

    Article  MATH  MathSciNet  Google Scholar 

  21. Ben Green, Terence Tao and Tamar Ziegler, An inverse theorem for the Gowers U4 norm, arXiv:0911.5681, 2009.

    Google Scholar 

  22. Ben Green, Terence Tao and Tamar Ziegler, An inverse theorem for the Gowers Uk norm. Preprint, 2009.

    Google Scholar 

  23. Timothy Gowers and Julia Wolf, Linear forms and higher-degree uniformity for functions on Fp n, arXiv: 1002.2208, 2010.

    Google Scholar 

  24. Timothy Gowers and Julia Wolf, Linear forms and quadratic uniformity for functions on Fp n, arXiv:1002.2209, 2010.

    Google Scholar 

  25. Johan Hås tad, Russell Impagliazzo, Leonid Levin and Michael Luby, A pseudorandom generator from any one-way function, SIAM Journal on Computing, 28(4) (1999), 1364–1396.

    Article  MATH  MathSciNet  Google Scholar 

  26. Russell Impagliazzo, Hard-core distributions for somewhat hard problems, in: Proceedings of the 36th IEEE Symposium on Foundations of Computer Science, 1995, pages 538–545.

    Google Scholar 

  27. Russell Impagliazzo, Personal Communication, 2008.

    Google Scholar 

  28. Shachar Lovett, Roy Meshulam and Alex Samorodnitsky, Inverse conjecture for the Gowers norm is false, in: Proceedings of the 40th ACM Symposium on Theory of Computing, 2008, pages 547–556.

    Google Scholar 

  29. László Lovász and Balázs Szegedy, Szemerédis lemma for the analyst, Geometric And Functional Analysis, 17 (2007), 252–270.

    Article  MATH  MathSciNet  Google Scholar 

  30. Ilya Mironov, Omkant Pandey, Omer Reingold and Salil P. Vadhan, Computational differential privacy, in: Proceedings of CRYPTO’09, 2009, pages 126–142.

    Google Scholar 

  31. Imre Ruzsa and Endre Szemerédi, Triple systems with no six points carrying three triangles, in: Proceedings of the Fifth Hungarian Colloquium on Combinatorics, 1976, pages 939–945. Volume II.

    Google Scholar 

  32. Omer Reingold, Luca Trevisan, Madhur Tulsiani and Salil Vadhan, Dense subsets of pseudorandom sets, in: Proceedings of the 49th IEEE Symposium on Foundations of Computer Science, 2008, pages 76–85.

    Google Scholar 

  33. Alex Samorodnitsky, Low-degree tests at large distances, in: Proceedings of the 39th ACM Symposium on Theory of Computing, 2007, pages 506–515.

    Google Scholar 

  34. Claude Shannon, Communication theory of secrecy systems, Bell System Technical Journal, 28 (1949), 656–715.

    MATH  MathSciNet  Google Scholar 

  35. Endre Szemerédi, On sets of integers containing no four elements in arithmetic progression, Acta Math. Acad. Sci. Hung., 20 (1969), 89–104.

    Article  MATH  Google Scholar 

  36. Endre Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica, 27 (1975), 199–245.

    MATH  MathSciNet  Google Scholar 

  37. Terence Tao, The ergodic and combinatorial approaches to Szemerédi’s theorem, arXiv:math.CO/0604456, 2006.

    Google Scholar 

  38. Terence Tao, A quantitative ergodic theory proof of Szemerédi’s theorem, Electronic Journal of Combinatorics, 13(4) (2006).

    Google Scholar 

  39. Terence Tao, Szemerédi’s regularity lemma revisited, Contributions to Discrete Mathematics, 1 (2006), 8–28.

    MATH  MathSciNet  Google Scholar 

  40. Terence Tao, Structure and randomness in combinatorics, in: Proceedings of the 48th IEEE Symposium on Foundations of Computer Science, 2007, pages 3–18.

    Google Scholar 

  41. A. G. Thomason, Pseudo-random graphs, Annals of Discrete Mathematics, 33 (1985), 307–331.

    Google Scholar 

  42. Luca Trevisan, Pseudorandomness and combinatorial constructions, in: Proceedings of the International Congress of Mathematicians, 2006.

    Google Scholar 

  43. Luca Trevisan, Madhur Tulsiani and Salil Vadhan, Regularity, boosting, and efficiently simulating every high-entropy distribution, in: Proceedings of the 24th IEEE Conference on Computational Complexity, 2009.

    Google Scholar 

  44. Terence Tao and Van Vu, Additive Combinatorics, Cambridge University Press, 2006.

    Google Scholar 

  45. Terence Tao and Tamar Ziegler, The inverse conjecture for the Gowers norm over finite fields via the correspondence principle, arXiv:0810.5527, 2008.

    Google Scholar 

  46. Terence Tao and Tamar Ziegler, The primes contain arbitrarily long polynomial progressions. Acta Mathematica, 201 (2008), 213–305.

    Article  MATH  MathSciNet  Google Scholar 

  47. Andrew C. Yao, Theory and applications of trapdoor functions, in: Proceedings of the 23th IEEE Symposium on Foundations of Computer Science, 1982, pages 80–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Trevisan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Trevisan, L. (2010). Pseudorandomness In Computer Science and In Additive Combinatorics. In: Bárány, I., Solymosi, J., Sági, G. (eds) An Irregular Mind. Bolyai Society Mathematical Studies, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14444-8_19

Download citation

Publish with us

Policies and ethics