Advertisement

Parallel Shape Optimization of a Missile on a Grid Infrastructure

  • Erdal Oktay
  • Osman Merttopcuoglu
  • Cevat Sener
  • Ahmet Ketenci
  • Hasan U. Akay
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 74)

Abstract

A computational tool is developed to be used in the preliminary design of an air vehicle. This tool parametrically optimizes the airframe shape. In order to search the entire solution space thoroughly, a genetic algorithm is used. Code parallelization is utilized to decrease the convergence time of the airframe shape design of a realistic missile geometry on a Grid infrastructure to further improve the search quality. In this work, a generic missile geometry is taken as a test case for a design application. The problem is to maximize the weighted average of lift-to-drag ratio for given mass and propulsion unit.

Key words

Design Optimization Shape Optimization Genetic Algorithms Parallel Computing Grid Computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Baysal,M.E. Eleshaky, Aerodynamic Design Optimization Using Sensitivity Analysis and Computational Fluid Dynamics. AIAA 91-0471 (1991)Google Scholar
  2. 2.
    Ide, H., Abdi, F., Shankar, V.J.: CFD Sensitivity Study for Aerodynamic/Control Optimization Problems. AIAA 88-2336 (1988)Google Scholar
  3. 3.
    Reuther, J., Jameson, A., Farmer, J., Martinelli, L., Suanders, D.: Aerodynamic Shape Optimization of Complex Aircraft Configurations via an Adjoint Formulation. AIAA 96-0094 (1996)Google Scholar
  4. 4.
    Anderson, M.B., Burkhalter, J.E., Jenkins, R.M.: Missile Aerodynamic Shape Optimization Using Genetic Algorithms. AIAA 99-0261 (1999)Google Scholar
  5. 5.
    Foster, N.F., Dulikravich, G.S.: Three-Dimensional Aerodynamic Shape Optimization Using Genetic and Gradient Search Algorithms. J. Spacecraft and Rockets 34, 36–41 (1997)CrossRefGoogle Scholar
  6. 6.
    Blaize, M., Knight, D., Rasheed, K.: Automated Optimal Design of Two Dimensional High Speed Missile Inlets. AIAA 98-0950 (1998)Google Scholar
  7. 7.
    Tekinalp, O., Bingl, M.: Simulated Annealing for Missile Optimization: Developing Method and Formulation Techniques. J. Guidance, Control, and Dynamics 27, 616–626 (2004)Google Scholar
  8. 8.
    Lee, J., Hajela, P.: Parallel Genetic Algorithm Implementation in Multidisciplinary Rotor Blade Design. J Aircraft 33 (1996) *Google Scholar
  9. 9.
    Jones, B.R., Crossley, W.A., Lyrintzis, A.S.: Aerodynamic and Aeroacoustic Optimization of Rotorcraft Airfoils via a Parallel Genetic Algorithm. J Aircraft 37 (2000)Google Scholar
  10. 10.
    Buns, K.A., Stoy, S.L., Vukelich, S. R.: Missile DATCOM: User Manual – 1997 Fortran 90 Revision (1998)Google Scholar
  11. 11.
    GridAE: Grid-based Artificial Evolution Framework, http://GridAE.ceng.metu.edu.tr
  12. 12.
    South Eastern European Grid-enabled Infrastructure Development Grid Project, http://www.see-grid.eu
  13. 13.
    Enabling Grids for E-sciencE, http://www.eu-egee.org
  14. 14.
    Lightweight Middleware for Grid Computing, http://glite.web.cern.ch/glite
  15. 15.

Copyright information

© Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Erdal Oktay
    • 1
  • Osman Merttopcuoglu
    • 2
  • Cevat Sener
    • 3
  • Ahmet Ketenci
    • 3
  • Hasan U. Akay
    • 4
  1. 1.EDA – Engineering Design & Analysis Ltd. CoAnkaraTurkey
  2. 2.ROKETSAN – Missile Industries, Inc.AnkaraTurkey
  3. 3.Dept. of Computer EngineeringMiddle East Technical UniversityAnkaraTurkey
  4. 4.Dept. of Mechanical EngineeringIndiana University-Purdue University IndianapolisIndianaUSA

Personalised recommendations