Skip to main content

Acceleration of iterative solution of series of systems due to better initial guess

  • 1924 Accesses

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 74)

Abstract

Efficient choice of the initial guess for the iterative solution of series of systems is considered. The series of systems are typical for unsteady nonlinear fluid flow problems. The history of iterative solution at previous time steps is used for computing a better initial guess. This strategy is applied for two iterative linear system solvers (GCR and GMRES). A reduced model technique is developed for implicitly discretized nonlinear evolution problems. The technique computes a better initial guess for the inexact Newton method. The methods are successfully tested in parallel CFD simulations. The latter approach is suitable for GRID computing as well.

Key words

  • Krylov method
  • Newton method
  • Proper Orthogonal Decomposition
  • client-server architecture
  • grid computing

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-14438-7_3
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-14438-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Eisenstat and H. Walker, Globally convergent inexact Newton methods. SIAM J. Optim. 4, 1994, 393-422.

    MATH  CrossRef  MathSciNet  Google Scholar 

  2. S. Eisenstat and H. Walker, Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput., 17, 1996, 16-32.

    MATH  CrossRef  MathSciNet  Google Scholar 

  3. G. Golub and G. Meurant, Matrices, moments and quadrature II: how to compute the norm of the error in iterative methods. BIT, 37-3, 1997, 687-705.

    CrossRef  MathSciNet  Google Scholar 

  4. P. Gosselet and Ch. Rey, On a selective reuse of Krylov subspaces in Newton-Krylov approaches for nonlinear elasticity. Domain decomposition methods in science and engineering, Natl. Auton. Univ. Mex., Mexico, 2003, 419-426.

    Google Scholar 

  5. C. T. Kelley, Iterative Methods for Optimization. Frontiers in Applied Mathematics 18. SIAM, Philadelphia, 1999

    Google Scholar 

  6. I. Keshtiban, F. Belblidia and M. Webster Compressible flow solvers for Low Mach number flows – a review. Technical report CSR2, Institute of Non-Newtonian Fluid Mechanics, University of Wales, Swansea, UK, 2004.

    Google Scholar 

  7. G. Meurant, Computer solution of large linear systems. Amsterdam, North-Holland, 1999.

    MATH  Google Scholar 

  8. G. Meurant, The computation of bounds for the norm of the error in the conjugate gradient algorithm.Numerical Algorithms, 16, 1998, 77-87.

    Google Scholar 

  9. M. Pernice and H. Walker, NITSOL: a Newton iterative solver for nonlinear systems. SIAM J. Sci. Comput., 19, 1998, 302-318.

    MATH  CrossRef  MathSciNet  Google Scholar 

  10. M.Rathinam and L.Petzold, Dynamic iteration using reduced order models: a method for simulation of large scale modular systems. SIAM J. Numer.Anal., 40, 2002, 1446-1474.

    Google Scholar 

  11. M. Rathinam and L. Petzold, A new look at proper orthogonal decomposition. SIAM J. Numer.Anal., 41, 2003, 1893-1925.

    MATH  CrossRef  MathSciNet  Google Scholar 

  12. F. Risler and Ch. Rey, Iterative accelerating algorithms with Krylov subspaces for the solution to large-scale nonlinear problems. Numer. Algorithms 23, 2000, 1-30.

    MATH  CrossRef  MathSciNet  Google Scholar 

  13. M. Schefer and S. Turek, Benchmark Computations of Laminar Flow around a Cylinder. In: Flow Simulation with High-Performance Computers II (E.H.Hirschel ed.), Notes on Numerical Fluid Mechanics,52, Vieweg, 1996, 547-566.

    Google Scholar 

  14. D. Tromeur-Dervout and Y. Vassilevski, POD acceleration of fully implicit solver for unsteady nonlinear flows and its application on GRID architecture. Proc. Int. Conf. PCFD05, 2006, 157-160.

    Google Scholar 

  15. D. Tromeur-Dervout and Y. Vassilevski, Choice of initial guess in iterative solution of series of systems arising in fluid flow simulations. J.Comput.Phys. 219, 2006, 210-227.

    Google Scholar 

  16. D. Tromeur-Dervout and Y. Vassilevski, POD acceleration of fully implicit solver for unsteady nonlinear flows and its application on grid architecture.Adv. Eng. Softw. 38, 2007, 301-311.

    Google Scholar 

  17. D. Tromeur-Dervout, Résolution des Equations de Navier-Stokes en Formulation Vitesse Tourbillon sur Systèmes multiprocesseurs à Mémoire Distribuée. Thesis, Univ. Paris VI, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Tromeur-Dervout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this paper

Cite this paper

Tromeur-Dervout, D., Vassilevski, Y. (2010). Acceleration of iterative solution of series of systems due to better initial guess. In: Tromeur-Dervout, D., Brenner, G., Emerson, D., Erhel, J. (eds) Parallel Computational Fluid Dynamics 2008. Lecture Notes in Computational Science and Engineering, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14438-7_3

Download citation