Multiple Relaxation Time Lattice Boltzmann simulation of binary droplet collisions

Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 74)


The Lattice Boltzmann method is employed to simulate binary droplet collisions. The Shan-Chen multiphase model, improved in the equation of state and in the incorporation of the body force, is integrated into the Multiple Relaxation Time scheme. Qualitative comparisons with the experiments show very good agreement.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Ashgriz and Y. Poo. Coalescence and separation in binary collisions of liquid drops. J. Fluid. Mech., 221:183–204, 1990.CrossRefGoogle Scholar
  2. 2.
    N. Carnahan and K. Starling. Equation of state for non attracting rigid spheres. J. Chem. Phys., 51:635, 1969.CrossRefGoogle Scholar
  3. 3.
    S. Chen and G. Doolen. Lattice boltzmann model for fluid dynamics. Annu. Rev. Fluid Mech., 30:329–364, 1998.CrossRefMathSciNetGoogle Scholar
  4. 4.
    D. D’Humieres, I. Guinzburg, M. Krafczyk, P. Lallemand, and L.S. Luo. Multiple relaxation time lattice boltzmann method in 3d. ICASE, 20:329–364, 2002.Google Scholar
  5. 5.
    X. He and L.S. Luo. Theory of lattice boltzmann method: From the boltzmann equation to the lattice boltzmann equation. Annu. Rev. Fluid Mech., 30:329–364, 1997.Google Scholar
  6. 6.
    A. Kupershtokh and D. Medvedev. Lattice boltzmann equation method in electrodynamic problems. J. Electrostatics, 2006.Google Scholar
  7. 7.
    B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, and G. Zanetti. Modeling merging and fragmentation in multiphase flows with surfer. J. Comput. Phys., 113:134, 1994.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Y.J. Jan M. Nobari and G. Tryggvason. Head-on collision of drops-a numerical investigation. Phys. Fluids, 29, 1996.Google Scholar
  9. 9.
    Y. Pan and K. Suga. Numerical simulations of binary liquid droplet collision. Phys. Fluids, 17, 082105, 2005.CrossRefGoogle Scholar
  10. 10.
    S.G. Jennings P.R. Brazier-Smith and J. Latham. The interaction of falling water drops: coalescence. Proc. R. Soc. Lond. A, 326:393–408, 1972.Google Scholar
  11. 11.
    K.N. Premnath and J. Abraham. Simulations of binary drop collisions with a multiple-relaxation-time lattice-boltzmann model. Phys. Fluids, 17, 122105, 2005.CrossRefGoogle Scholar
  12. 12.
    J. Qian and C.K. Law. Regimes of coalescence and phase separation in droplet collision. J. Fluid. Mech., 331:59–80, 1997.CrossRefGoogle Scholar
  13. 13.
    B. Sakakibara and T. Inamuro. Lattice boltzmann simulation of collision dynamics of unequal-size droplets. Int. J. Heat Mass Transfer, 51:3207–3216, 2008.MATHCrossRefGoogle Scholar
  14. 14.
    M. Sbaraglia, R. Benzi, L. Biferale, S. Succi, K. Sugiyama, and F. Toschi. Generalized lattice boltzmann method with multirange pseudopotential. Phys. Rev. E, 2007.Google Scholar
  15. 15.
    X.W. Shan and H.D. Chen. Lattice boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E, 47:1815, 1993.CrossRefGoogle Scholar
  16. 16.
    F. Ogino T. Inamuro, S. Tajima. Lattice boltzmann simulation of droplet collision dynamics. Int. J. Heat Mass Transfer, 47, 2004.Google Scholar
  17. 17.
    D. d’Humieres Y.H. Quian and P. Lallemand. Lattice bgk models for the navier-stokes equation. Europhys. Lett., 17:479, 1992.Google Scholar
  18. 18.
    P. Yuan and L. Schaefer. Equations of state in a lattice boltzmann model. Phys. Fluids, 18, 042101, 2006.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute of Applied MechanicsClausthal UniversityClausthalGermany
  2. 2.Energy Technology Group, School of Engineering SciencesSouthampton UniversitySouthamptonUK

Personalised recommendations