Skip to main content

Applications on Hybrid Unstructured Moving Grid Method for Three-Dimensional Compressible Flows

  • 1935 Accesses

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 74)

Abstract

For CFD problem with a complicated moving boundary, the unstructured moving-grid finite-volume method has been proposed and its ability recognized. However, the method was limited for applications using inviscid compressible flows. In this paper, the method is developed to apply to three-dimensional Navier-Stokes equations for viscous compressible flows. We formulate a control volume for prismatic element well adapted to unstructured mesh. Then, the method is applied to a flow around oscillating ONERA M6 airfoil at high Reynolds nmber. And the computation is executed in OpenMP parallel environment.

Key words

  • Unstructured Grid
  • Compressible Flow
  • OpenMP Parallelization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-14438-7_12
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-14438-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Matsuno, K. Mihara. and N. Satofuka, ”A Moving-Mesh Finite-Volume Scheme for Compressible Flows with Traveling Wall Boundaries”, ComputationalFluidDynamics2000, Springer July, (2001) pp705-710.

    Google Scholar 

  2. M. Yamakawa and K. Matsuno, ”Unstructured Moving-Grid Finite-Volume Method for Unsteady Shocked Flows”, JournalofComputationalFluidsEngineering, Vol. 10, No.1, (2005), pp 24-30.

    Google Scholar 

  3. P. L. Roe, ”Approximate Riemann Solvers Parameter Vectors and Difference Schemes”, JournalofComputationalPhysics., Vol. 43, (1981), pp 357-372.

    MATH  MathSciNet  Google Scholar 

  4. V. Venkatakrishnan, ”On the Accuracy of Limiters and Convergence to Steady State Solutions”, AIAAPaper, 93-0880, (1993)

    Google Scholar 

  5. C. L. Rumsey, M. D. Sanetrik, R. T. Biedron, N. D. Melson, and E. B. Parlette, ”Efficiency and Accuracy of Time-Accurate Turbulent Navier-Stokes Computations”, ComputersandFluids, Vol. 25, (1996), pp 217-236.

    MATH  Google Scholar 

  6. A. Jameson, and S. Yoon, ”Lower-Upper Implicit Scheme with Multiple Grids for the Euler Equations”, AIAAJornal, Vol.25, (1987), pp 929-935

    Google Scholar 

  7. S. Pirzadeh, ”Three-Dimensional Unstructured Viscous Grid by the Advancing-Layer Method”, AIAAJornal, Vol.34, (1996), pp 43-49

    MATH  Google Scholar 

  8. J. T. Batine, ”Unsteady Euler Algorithm with Unstructured Dynamic Mesh for Complex-Aircraft Aerodynamics Analysis”, AIAAJornal, Vol.29, (1991), pp 327-333

    Google Scholar 

  9. P. R. Spalart and S. R. Allmaras, ”One-Equation Turbulence Model for Aerodynamics Flows”, AIAAPaper, 92-0349, (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this paper

Cite this paper

Asakawa, H., Yamakawa, M., Matsuno, K. (2010). Applications on Hybrid Unstructured Moving Grid Method for Three-Dimensional Compressible Flows. In: Tromeur-Dervout, D., Brenner, G., Emerson, D., Erhel, J. (eds) Parallel Computational Fluid Dynamics 2008. Lecture Notes in Computational Science and Engineering, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14438-7_12

Download citation