Large Scale Computations in Nuclear Engineering: CFD for Multiphase Flows and DNS for Turbulent Flows with/without Magnetic Field

  • Tomoaki Kunugi
  • Shin-ichi Satake
  • Yasuo Ose
  • Hiroyuki Yoshida
  • Kazuyuki Takase
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 74)


Large scale computations are being carried out in nuclear engineering fields such as light water reactors, fast breeder reactors, high temperature gas-cooled reactors and nuclear fusion reactors. The computational fluid dynamics (CFD) regarding not only the single-phase flows but also the two-phase flow plays an important role for the developments of advanced nuclear reactor systems. In this review paper, some examples of large scale computations in nuclear engineering fields are illustrated by using a parallel visualization.

Key words

Direct numerical simulation Multiphase flows Turbulent flows Parallel visualization Magnetohydrodynamics Nuclear reactors Fusion reactors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kenning, D. B. R., Youyou, Y Pool boiling heat transfer on a thin plate: features revealed by liquid crystal thermography International Journal of Heat and Mass Transfer, Vol. 39, No. 15, 3117-3137, 1996.Google Scholar
  2. 2.
    Mikic, B. B., Rohsenow, W. M Bubble growth rates in non-uniform temperature field ASME J. Heat Transfer 91, 245-250, 1969.Google Scholar
  3. 3.
    Welch, S. W. J Local Simulation of Two-Phase Flows Including Interface Tracking with Mass Transfer J. Comput. Phys., vol. 121, 142-154, 1995.Google Scholar
  4. 4.
    Son, G., Dhir, V. K Numerical Simulation of Saturated Film Boiling on a Horizontal Surface J. Heat Transfer, Vol. 119, 525-533, 1997.Google Scholar
  5. 5.
    Juric, D., Tryggvason, G Computations of boiling flows Int. J. Multiphase Flow, vol. 24, 387-410, 1998.Google Scholar
  6. 6.
    Unverdi, S., Tryggvason, G A front-tracking method for viscous, incompressible, multifluid flows J. Comput. Phys., vol. 100, 25-37, 1992.Google Scholar
  7. 7.
    Kunugi, T MARS for Multiphase Calculation Computational Fluid Dynamics Journal, Vol.9, No. 1, 563-571, 2001Google Scholar
  8. 8.
    Carey, V. P Liquid-vapor Phase-change Phenomena - An introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Chapters 5 and 6, Taylor & Francis, 1992.Google Scholar
  9. 9.
    Brackbill, J. U., Kothe, D. B., Zemach, C A continuum method for modeling surface tension J. Comput. Phys., Vol. 100, 335-354, 1992.Google Scholar
  10. 10.
    Kunugi, T., Saito, N., Fujita, Y., Serizawa, A Direct Numerical Simulation of Pool and Forced Convective Flow Boiling Phenomena Heat Transfer 2002, Vol. 3, 497-502, 2002.Google Scholar
  11. 11.
    Kelly, J. E., Kao, S. P., Kazimi, M. S THERMIT-2: A two-fluid model for light water reactor subchannel transient analysis MIT-EL-81-014, 1981.Google Scholar
  12. 12.
    Thurgood, M. J COBRA/TRAC - A thermal-hydraulic code for transient analysis of nuclear reactor vessels and primary coolant systems, equation and constitutive models NURREG/CR-3046, PNL-4385, Vol. 1, R4, 1983.Google Scholar
  13. 13.
    Sugawara, S., Miyamoto, Y FIDAS: Detailed subchannel analysis code based on the three-fluid and threefield model Nuclear Engineering and Design, vol.129, 146-161, 1990.Google Scholar
  14. 14.
    Taylor, D TRAC-BD1/MOD1: An advanced best estimated computer program for boiling water reactor transient analysis, volume 1 - model description NUREG/CR-3633, 1984.Google Scholar
  15. 15.
    Liles, D TRAC-PF1/MOD1: An advanced best-estimate computer program for pressurized water reactor analysis NUREG/CR-3858, LA-10157-MS, 1986.Google Scholar
  16. 16.
    Iwamura, T., Okubo, T Development of reduced-moderation water reactor (RMWR) for sustainable energy supply Proc. 13th Pacific Basin Nuclear Conference (PBNC 2002), Shenzhen, China, 1631-1637, 2002.Google Scholar
  17. 17.
    Iwamura, T Core and system design of reduced-moderation water reactor with passive safety features Proc. 2002 International Congress on Advanced in Nuclear Power Plants (ICAPP 2002), No.1030, Hollywood, Florida, USA, 2002.Google Scholar
  18. 18.
    Okubo, T., Iwamura, T Design of small reduced-moderation water reactor (RMWR) with natural circulation cooling Proc. International Conference on the New Frontiers of Nuclear Technology; Reactor Physics, Safety and High-Performance Computing (PHYSOR2002), Seoul, Korea, 2002.Google Scholar
  19. 19.
    Earth Simulator Center, Annual report of the earth simulator center (April 2002- March 2003) Japan Marine Science and Technology Center, 2003.Google Scholar
  20. 20.
    Takase, K., Tamai, H., Yoshida, H., Akimoto, H Development of a Best Estimate Analysis Method on Two-Phase Flow Thermal-Hydraulics for Reduced-Moderation Water Reactors Proc. Best Estimate Twenty-O-Four (BE2004), Arlington, Washington D.C., USA, November, 2004.Google Scholar
  21. 21.
    Yoshida, H., Takase, K., Ose, Y., Tamai, H., Akimoto, H Numerical simulation of liquid film around grid spacer with interface tracking method Proc. International Conference on Global Environment and Advanced Nuclear Power Plants (GENES4/ANP2003), No.1111, Kyoto, Japan, 2003.Google Scholar
  22. 22.
    Takase, K., Yoshida, H., Ose, Y., Kureta, M., Tamai, H., Akimoto, H Numerical investigation of two-phase flow structure around fuel rods with spacers by large-scale simulations Proc. 5th International Conference on Multiphase Flow (ICMF04), No.373, Yokohama, Japan, June, 2004.Google Scholar
  23. 23.
    T. Yabe, T The constrained interpolation profile method for multiphase analysis J. computational Physics, vol.169, No.2, 556-593, 2001.Google Scholar
  24. 24.
    Youngs, D.L Numerical methods for fluid dynamics, Edited by Morton K.W. & Baine, M.J. Academic Press, 273-285, 1982.Google Scholar
  25. 25.
    Kureta, M., Liu, W., Tamai, H., Ohnuki, A., Mitsutake, T., Akimoto, H Development of Predictable Technology for Thermal/Hydraulic Performance of Reduced-Moderation Water Reactors (2) - Large-scale Thermal/Hydraulic Test and Model Experiments - Proc. 2004 International Congress on Advanced in Nuclear Power Plants (ICAPP 2002), No.4056, Pittsburg, Pennsylvania, USA, June, 2004.Google Scholar
  26. 26.
    Satake, S., Kunugi, T. Himeno, R High Reynolds Number Computation for Turbulent Heat Transfer in a Pipe Flow, M. Valero et al. (Eds.), Lecture Notes in Computer Science 1940 High Performance Computing, 514-523, 2000.Google Scholar
  27. 27.
    Satake, S., Kunugi, T., Takase, K., Ose, Y., Naito, N Large Scale Structures of Turbulent Shear Flow via DNS, A. Veidenbaum et al. (Eds.), Lecture Notes in Computer Science 2858 High Performance Computing, 468-475, 2003.Google Scholar
  28. 28.
    Satake, S., Kunugi, T., Takase, K., Ose, Y Direct numerical simulation of turbulent channel flow under a uniform magnetic field for large-scale structures at high Reynolds number Physics of Fluid, 18, 125106, 2006.Google Scholar

Copyright information

© Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Tomoaki Kunugi
    • 1
  • Shin-ichi Satake
    • 2
  • Yasuo Ose
    • 1
  • Hiroyuki Yoshida
    • 3
  • Kazuyuki Takase
    • 3
  1. 1.Kyoto UniversityKyotoJapan
  2. 2.Tokyo University of ScienceNodaJapan
  3. 3.Japan Atomic Energy AgencyTokai-muraJapan

Personalised recommendations