Developmental Relationship and Convergence Between the Formation of Lymphoid Organs and Lymphatic Vasculature

  • Péter Balogh


The lymphatic system ensures a continuous flow of interstitial fluid and cell transfer through the lymph nodes and into the blood circulation. In addition, lymphatic capillaries also play an important role in the egress of lymphocytes from secondary lymphoid tissues. The specialization of lymphatic endothelium and its synchronization with the local blood vessel formation are crucial for proper lymph node circulation. The embryonic appearance of lymphatic vessels on one hand is the result of a separate endothelial commitment but may also be initiated by nonendothelial cells under pathological conditions. This chapter outlines those fate-determining events, transcription factors, and endothelial growth factors that are necessary for the establishment of lymphatic endothelium identity, and the relationship between the lymphatic vessel development and lymph node formation.


Lymphatic Vessel Hemopoietic Cell Lymphatic Capillary Cardinal Vein Lymphatic Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R. (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13:295–306CrossRefPubMedGoogle Scholar
  2. Angeli V, Ginhoux F, Llodrà J, Quemeneur L, Frenette PS, Skobe M, Jessberger R, Merad M, Randolph GJ (2006) B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24:203–215CrossRefPubMedGoogle Scholar
  3. Daniels CB, Lewis BC, Tsopelas C, Munns SL, Orgeig S, Baldwin ME, Stacker SA, Achen MG, Chatterton BE, Cooter RD (2003) Regenerating lizard tails: a new model for investigating lymphangiogenesis. FASEB J 17:479–481PubMedGoogle Scholar
  4. D’Souza SL, Elefanty AG, Keller G (2005) SCL/Tal-1 is essential for hematopoietic commitment of the hemangioblast but not for its development. Blood 105:3862–3870CrossRefPubMedGoogle Scholar
  5. Ema M, Faloon P, Zhang WJ, Hirashima M, Reid T, Stanford WL, Orkin S, Choi K, Rossant J (2003) Combinatorial effects of Flk1 and Tal1 on vascular and hematopoietic development in the mouse. Genes Dev 17:380–393CrossRefPubMedGoogle Scholar
  6. Greenberg JI, Shields DJ, Barillas SG, Acevedo LM, Murphy E, Huang J, Scheppke L, Stockmann C, Johnson RS, Angle N, Cheresh DA (2008) A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456:809–813CrossRefPubMedGoogle Scholar
  7. Hirakawa S, Hong YK, Harvey N, Schacht V, Matsuda K, Libermann T, Detmar M (2003) Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 162:575–586PubMedGoogle Scholar
  8. Hosking B, Makinen T. (2007) Lymphatic vasculature: a molecular perspective. Bioessays 29:1192–1202CrossRefPubMedGoogle Scholar
  9. Hong YK, Harvey N, Noh YH, Schacht V, Hirakawa S, Detmar M, Oliver G (2002) Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 225:351–357CrossRefPubMedGoogle Scholar
  10. Hong YK, Foreman K, Shin JW, Hirakawa S, Curry CL, Sage DR, Libermann T, Dezube BJ, Fingeroth JD, Detmar M (2004) Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat Genet 36:683–685CrossRefPubMedGoogle Scholar
  11. Huntington GS, McClure CFW (1910) The anatomy and development of the jugular lymph sac in the domestic cat (Felis domestica). Am J Anat 10:177–311CrossRefGoogle Scholar
  12. Jeltsch M, Tammela T, Alitalo K, Wilting J (2003) Genesis and pathogenesis of lymphatic vessels. Cell Tissue Res 314:69–84CrossRefPubMedGoogle Scholar
  13. Jiang S, Bailey AS, Goldman DC, Swain JR, Wong MH, Streeter PR, Fleming WH (2008) Hematopoietic stem cells contribute to lymphatic endothelium. PLoS One 3:e3812CrossRefPubMedGoogle Scholar
  14. Johnson LA, Jackson DG (2008) Cell traffic and the lymphatic endothelium. Ann N Y Acad Sci 1131:119–133CrossRefPubMedGoogle Scholar
  15. Jurisic G, Detmar M (2009) Lymphatic endothelium in health and disease. Cell Tissue Res 335:97–108CrossRefPubMedGoogle Scholar
  16. Jussila L, Valtola R, Partanen TA, Salven P, Heikkila P, Matikainen MT, Renkonen R, Kaipainen A, Detmar M, Tschachler E, Alitalo R, Alitalo K (1998) Lymphatic endothelium and Kaposi’s sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor receptor-3, Cancer Res 58:1599–1604PubMedGoogle Scholar
  17. Kubo H, Alitalo K (2003) The bloody fate of endothelial stem cells. Genes Dev 17:322–329CrossRefPubMedGoogle Scholar
  18. Lancrin C, Sroczynska P, Stephenson C, Allen T, Kouskoff V, Lacaud G (2009) The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457:892–895CrossRefPubMedGoogle Scholar
  19. Liao S, Ruddle NH (2006) Synchrony of high endothelial venules and lymphatic vessels revealed by immunization. J Immunol 177:3369–3379PubMedGoogle Scholar
  20. Martin-Fontecha A, Sebastiani S, Höpken UE, Uguccioni M, Lipp M, Lanzavecchia A, Sallusto F (2003) Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 198:615–621CrossRefPubMedGoogle Scholar
  21. Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, Van Rooijen N, Takenaka H, D’Amore PA, Stein-Streilein J, Losordo DW, Streilein JW (2005) Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 115:2363–2372CrossRefPubMedGoogle Scholar
  22. Oliver G, Srinivasan RS (2008) Lymphatic vasculature development: current concepts. Ann N Y Acad Sci 1131:75–81CrossRefPubMedGoogle Scholar
  23. Petrova TV, Karpanen T, Norrmén C, Mellor R, Tamakoshi T, Finegold D, Ferrell R, Kerjaschki D, Mortimer P, Ylä-Herttuala S, Miura N, Alitalo K (2004) Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 10:974–981CrossRefPubMedGoogle Scholar
  24. Pruett ND, Visconti RP, Jacobs DF, Scholz D, McQuinn T, Sundberg JP, Awgulewitsch A (2008) Evidence for Hox-specified positional identities in adult vasculature. BMC Dev Biol 8:93CrossRefPubMedGoogle Scholar
  25. Sabin FR (1902) On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am J Anat 1:367–391CrossRefGoogle Scholar
  26. Shin JW, Min M, Larrieu-Lahargue F, Canron X, Kunstfeld R, Nguyen L, Henderson JE, Bikfalvi A, Detmar M, Hong YK (2006) Prox1 promotes lineage-specific expression of fibroblast growth factor (FGF) receptor-3 in lymphatic endothelium: a role for FGF signaling in lymphangiogenesis. Mol Biol Cell 17:576–584CrossRefPubMedGoogle Scholar
  27. Shin M, Nagai H, Sheng G (2009) Notch mediates Wnt and BMP signals in the early separation of smooth muscle progenitors and blood/endothelial common progenitors. Development 136:595–603CrossRefPubMedGoogle Scholar
  28. Vondenhoff MF, van de Pavert SA, Dillard ME, Greuter M, Goverse G, Oliver G, Mebius RE (2009) Lymph sacs are not required for the initiation of lymph node formation. Development 136:29–34CrossRefPubMedGoogle Scholar
  29. Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98:769–778CrossRefPubMedGoogle Scholar
  30. Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG, Oliver G (2002) An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 21:1505–1513CrossRefPubMedGoogle Scholar
  31. Xiong M, Elson G, Legarda D, Leibovich SJ (1998) Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. Am J Pathol 153:587–598PubMedGoogle Scholar
  32. You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY (2005) Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435:98–104CrossRefPubMedGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  • Péter Balogh
    • 1
  1. 1.Department of Immunology and Biotechnology, Faculty of MedicineUniversity of PécsPécsHungary

Personalised recommendations