Advertisement

NF-κB Signalling and Lymphoid Tissue Organogenesis

  • Cecile Benezech
  • Emma Mader
  • Falk Weih
  • Jorge CaamañoEmail author
Chapter

Abstract

The development of secondary lymphoid organs is initiated by crosstalk interactions between bone marrow-derived cells and stromal cells. Several of the molecules mediating this cell–cell communication are members of the Tumour Necrosis Factor (TNF) family of ligands and receptors that induce changes in the gene expression program through activation of different members of the Nuclear Factor kappa B (NF-кB) family of transcription factors. Engagement of TNF receptors by their specific ligands results in the activation of the canonical and non-canonical NF-кB pathways that ultimately induce the expression of cytokines, chemokines and cell adhesion molecules required for lymphorganogenesis, organization of specific areas in these organs and their long-term maintenance. Analysis of transgenic mice with impairments in these pathways have underlined the important function of different NF-кB family members, their cell specificity and requirement during lymphoid tissue organogenesis and helped to define some of their transcriptional targets.

Keywords

Gene Expression Program Secondary Lymphoid Organ Marginal Sinus Lymphoid Tissue Inducer Lymphoid Tissue Inducer Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by a BBSRC project grant and a EU FP7 INFLACARE Collaborative Project grant to J. Caamaño and Deutsche Forschungsgemeinschaft (WE-2224/2, WE 2224/4, and WE-2224/5) grants to F. Weih.

References

  1. Alcamo E, Mizgerd JP, Horwitz BH, Bronson R, Beg AA, Scott M, Doerschuk CM, Hynes RO, Baltimore D (2001) Targeted mutation of TNF receptor. I rescues the RelA-deficient mouse and reveals a critical role for NF-kappa B in leukocyte recruitment. J Immunol 167:1592–1600PubMedGoogle Scholar
  2. Alcamo E, HacohenN, SchulteL, RennertP, HynesR, BaltimoreD (2002) Requirement of the NF-kB family member RelA in the development of secondary lymphoid organs. J Exp Med 195:233–244CrossRefPubMedGoogle Scholar
  3. Basak S, Hoffmann A (2008) Crosstalk via the NF-kappaB signaling system. Cytokine Growth Factor Rev 19:187–197CrossRefPubMedGoogle Scholar
  4. Basak S, Kim H, Kearns JD, Tergaonkar V, O’Dea E, Werner SL, Benedict CA, Ware CF, Ghosh G, Verma IM, Hoffmann A (2007) A fourth IkappaB protein within the NF-kappaB signaling module. Cell 128:369–381CrossRefPubMedGoogle Scholar
  5. Basak S, Shih VF, Hoffmann A (2008) Generation and activation of multiple dimeric transcription factors within the NF-kappaB signaling system. Mol Cell Biol 28:3139–3150CrossRefPubMedGoogle Scholar
  6. Benezech C, White A, Mader E, Serre K, Parnell S, Pfeffer K, Ware CF, Anderson G, Caamano JH (2010) Ontogeny of stromal organizer cells during lymph node development. J Immunol 184:4521–4530CrossRefPubMedGoogle Scholar
  7. Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25:280–288CrossRefPubMedGoogle Scholar
  8. Bonizzi G, Bebien M, Otero DC, Johnson-Vroom KE, Cao Y, Vu D, Jegga AG, Aronow BJ, Ghosh G, Rickert RC, Karin M (2004) Activation of IKKalpha target genes depends on recognition of specific kappaB binding sites by RelB:p52 dimers. Embo J 23:4202–4210CrossRefPubMedGoogle Scholar
  9. Bouskra D, Brezillon C, Berard M, Werts C, Varona R, Boneca IG, Eberl G (2008) Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456:507–510CrossRefPubMedGoogle Scholar
  10. Browning JL, Allaire N, Ngam-Ek A, Notidis E, Hunt J, Perrin S, Fava RA (2005) Lymphotoxin-beta receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity 23:539–550CrossRefPubMedGoogle Scholar
  11. Caamaño J, Rizzo C, Durham S, Barton D, Raventos-Suarez C, Snapper C, Bravo R (1998) Nuclear Factor (NF)-kB2 (p100/p52) is required for Normal Splenic Microarchitecture and B Cell-mediated Immune Responses. J Exp Med 187:185–196CrossRefPubMedGoogle Scholar
  12. Carragher D, Johal R, Button A, White A, Eliopoulos A, Jenkinson E, Anderson G, Caamano J (2004) A stroma-derived defect in NF-kappaB2−/− mice causes impaired lymph node development and lymphocyte recruitment. J Immunol 173:2271–2279PubMedGoogle Scholar
  13. Carragher DM, Rangel-Moreno J, Randall TD (2008) Ectopic lymphoid tissues and local immunity. Semin Immunol 20:26–42CrossRefPubMedGoogle Scholar
  14. Cupedo T, Mebius RE (2005) Cellular interactions in lymph node development. J Immunol 174:21–25PubMedGoogle Scholar
  15. Dejardin E (2006) The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development. Biochem Pharmacol 72:1161–1179CrossRefPubMedGoogle Scholar
  16. Dejardin E, Droin NM, Delhase M, Haas E, Cao Y, Makris C, Li ZW, Karin M, Ware CF, Green DR (2002) The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 17:525–535CrossRefPubMedGoogle Scholar
  17. Derudder E, Dejardin E, Pritchard LL, Green DR, Korner M, Baud V (2003) RelB/p50 dimers are differentially regulated by tumor necrosis factor-alpha and lymphotoxin-beta receptor activation: critical roles for p100. J Biol Chem 278:23278–23284CrossRefPubMedGoogle Scholar
  18. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424CrossRefPubMedGoogle Scholar
  19. Drayton DL, Bonizzi G, Ying X, Liao S, Karin M, Ruddle NH (2004) IkappaB kinase complex alpha kinase activity controls chemokine and high endothelial venule gene expression in lymph nodes and nasal-associated lymphoid tissue. J Immunol 173:6161–6168PubMedGoogle Scholar
  20. Drayton DL, Liao S, Mounzer RH, Ruddle NH (2006) Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol 7:344–353CrossRefPubMedGoogle Scholar
  21. Eberl G, Marmon S, Sunshine MJ, Rennert PD, Choi Y, Littman DR (2004) An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 5:64–73CrossRefPubMedGoogle Scholar
  22. Franzoso G, Carlson L, Poljak L, Shores E, Epstein S, Leonardi A, Grinberg A, Tran T, Scharton-Kersten T, Anver M, Love P, Brown K, Siebenlist U (1998) Mice deficient in nuclear factor (NF)-kB/p52 present with defects in humoral responses, germinal center reactions, and splenic microarchitecture. J Exp Med 187:147–159CrossRefPubMedGoogle Scholar
  23. Fu Y-X, Chaplin D (1999) Development and maturation of secondary lymphoid tissues. Annu Rev Immunol 17:399–433CrossRefPubMedGoogle Scholar
  24. Ghosh S, Hayden MS (2008) New regulators of NF-kappaB in inflammation. Nat Rev Immunol 8:837–848CrossRefPubMedGoogle Scholar
  25. Ghosh S, Karin M (2002) Missing pieces in the NF-kappaB puzzle. Cell 109 Suppl:S81–S96CrossRefPubMedGoogle Scholar
  26. Gommerman JL, Browning JL (2003) Lymphotoxin/light, lymphoid microenvironments and autoimmune disease. Nat Rev Immunol 3:642–655CrossRefPubMedGoogle Scholar
  27. Grabner R, Lotzer K, Dopping S, Hildner M, Radke D, Beer M, Spanbroek R, Lippert B, Reardon CA, Getz GS, Fu YX, Hehlgans T, Mebius RE, van der Wall M, Kruspe D, Englert C, Lovas A, Hu D, Randolph GJ, Weih F, Habenicht AJ (2009) Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE−/− mice. J Exp Med 206:233–248CrossRefPubMedGoogle Scholar
  28. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899CrossRefPubMedGoogle Scholar
  29. Guo F, Weih D, Meier E, Weih F (2007) Constitutive alternative NF-kappaB signaling promotes marginal zone B-cell development but disrupts the marginal sinus and induces HEV-like structures in the spleen. Blood 110:2381–2389CrossRefPubMedGoogle Scholar
  30. Hagemann T, Balkwill F, Lawrence T (2007) Inflammation and cancer: a double-edged sword. Cancer Cell 12:300–301CrossRefPubMedGoogle Scholar
  31. He JQ, Zarnegar B, Oganesyan G, Saha SK, Yamazaki S, Doyle SE, Dempsey PW, Cheng G (2006) Rescue of TRAF3-null mice by p100 NF-kappa B deficiency. J Exp Med 203:2413–2418CrossRefPubMedGoogle Scholar
  32. Huber C, Thielen C, Seeger H, Schwarz P, Montrasio F, Wilson MR, Heinen E, Fu YX, Miele G, Aguzzi A (2005) Lymphotoxin-beta receptor-dependent genes in lymph node and follicular dendritic cell transcriptomes. J Immunol 174:5526–5536PubMedGoogle Scholar
  33. Ishikawa H, Carrasco D, Claudio E, Ryseck RP, Bravo R (1997) Gastric hyperplasia and increased proliferative responses of lymphocytes in mice lacking the COOH-terminal ankyrin domain of NF-kappaB2. J Exp Med 186:999–1014CrossRefPubMedGoogle Scholar
  34. Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759CrossRefPubMedGoogle Scholar
  35. Katakai T, Hara T, Sugai M, Gonda H, Shimizu A (2004) Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J Exp Med 200:783–795CrossRefPubMedGoogle Scholar
  36. Kim D, Mebius RE, MacMicking JD, Jung S, Cupedo T, Castellanos Y, Rho J, Wong BR, Josien R, Kim N, Rennert PD, Choi Y (2000) Regulation of peripheral lymph node genesis by the tumor necrosis factor family member TRANCE. J Exp Med 192:1467–1478CrossRefPubMedGoogle Scholar
  37. Kim NS, Kim HJ, Koo BK, Kwon MC, Kim YW, Cho Y, Yokota Y, Penninger JM, Kong YY (2006) Receptor activator of NF-kappaB ligand regulates the proliferation of mammary epithelial cells via Id2. Mol Cell Biol 26:1002–1013CrossRefPubMedGoogle Scholar
  38. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323CrossRefPubMedGoogle Scholar
  39. Kratz A, Campos-Neto A, Hanson MS, Ruddle NH (1996) Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J Exp Med 183:1461–1472CrossRefPubMedGoogle Scholar
  40. Lin Y, Wu L, Wesche H, Arthur C, White J, Goeddel D, Schreiber R (2001) Defective Lymphotoxin-b-Receptor-induced NF-kB transcriptional activity in NIK-deficient mice. Science 291:2162–2165CrossRefGoogle Scholar
  41. Lo JC, Basak S, James ES, Quiambo RS, Kinsella MC, Alegre ML, Weih F, Franzoso G, Hoffmann A, Fu YX (2006) Coordination between NF-kappaB family members p50 and p52 is essential for mediating LTbetaR signals in the development and organization of secondary lymphoid tissues. Blood 107:1048–1055CrossRefPubMedGoogle Scholar
  42. Lotzer K, Dopping S, Connert S, Grabner R, Spanbroek R, Lemser B, Beer M, Hildner M, Hehlgans T, van der Wall M, Mebius RE, Lovas A, Randolph GJ, Weih F, Habenicht AJ (2010) Mouse aorta smooth muscle cells differentiate into lymphoid tissue organizer-like cells on combined tumor necrosis factor receptor- 1/lymphotoxin beta-receptor NF-kappaB signaling. Arterioscler Thromb Vasc Biol 30:395–402CrossRefPubMedGoogle Scholar
  43. Lovas A, Radke D, Albrecht D, Yilmaz ZB, Moller U, Habenicht AJ, Weih F (2008) Differential RelA- and RelB-dependent gene transcription in LTbetaR- stimulated mouse embryonic fibroblasts. BMC Genomics 9:606CrossRefPubMedGoogle Scholar
  44. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444CrossRefPubMedGoogle Scholar
  45. Mebius RE (2003) Organogenesis of lymphoid tissues. Nat Rev Immunol 3:292–303CrossRefPubMedGoogle Scholar
  46. Mordmuller B, Krappmann D, Esen M, Wegener E, Scheidereit C (2003) Lymphotoxin and lipopolysaccharide induce NF-kappaB-p52 generation by a co-translational mechanism. EMBO Rep 4:82–87CrossRefPubMedGoogle Scholar
  47. Mueller SN, Germain RN (2009) Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol 9:618–629PubMedGoogle Scholar
  48. Muller JR, Siebenlist U (2003) Lymphotoxin beta receptor induces sequential activation of distinct NF-kappa B factors via separate signaling pathways. J Biol Chem 278:12006–12012CrossRefPubMedGoogle Scholar
  49. Nenci A, Becker C, Wullaert A, Gareus R, van Loo G, Danese S, Huth M, Nikolaev A, Neufert C, Madison B, Gumucio D, Neurath MF, Pasparakis M (2007) Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446:557–561CrossRefPubMedGoogle Scholar
  50. Ngo V, Korner H, Gunn M, Schmidt K, Riminton D, Cooper M, Browning J, Sedgwick J, Cyster J (1999) Lymphotoxin a/b and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J Exp Med 189:403–412CrossRefPubMedGoogle Scholar
  51. Pasparakis M (2008) IKK/NF-kappaB signaling in intestinal epithelial cells controls immune homeostasis in the gut. Mucosal Immunol 1 (Suppl 1):S54–S57CrossRefPubMedGoogle Scholar
  52. Pasparakis M (2009) Regulation of tissue homeostasis by NF-kappaB signalling: implications for inflammatory diseases. Nat Rev Immunol 9:778–788CrossRefPubMedGoogle Scholar
  53. Paxian S, Merkle H, Riemann M, Wilda M, Adler G, Hameister H, Liptay S, Pfeffer K, Schmid RM (2002) Abnormal organogenesis of Peyer’s patches in mice deficient for NF-kappaB1, NF-kappaB2, and Bcl-3. Gastroenterology 122:1853–1868CrossRefPubMedGoogle Scholar
  54. Peduto L, Dulauroy S, Lochner M, Spath GF, Morales MA, Cumano A, Eberl G (2009) Inflammation recapitulates the ontogeny of lymphoid stromal cells. J Immunol 182:5789–5799CrossRefPubMedGoogle Scholar
  55. Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8:49–62CrossRefPubMedGoogle Scholar
  56. Piao JH, Yoshida H, Yeh WC, Doi T, Xue X, Yagita H, Okumura K, Nakano H (2007) TNF receptor-associated factor 2-dependent canonical pathway is crucial for the development of Peyer’s patches. J Immunol 178:2272–2277PubMedGoogle Scholar
  57. Poljak L, Carlson L, Cunningham K, Kosco-Vilbois M, Siebenlist U (1999) Distinct activities of p52/NF-kB required for proper secondary lymphoid organ microarchitecture: functions enhanced by Bcl-3. J Immunol 163:6581–6588PubMedGoogle Scholar
  58. Qing G, Qu Z, Xiao G (2005) Stabilization of basally translated NF-kappaB-inducing kinase (NIK) protein functions as a molecular switch of processing of NF-kappaB2 p100. J Biol Chem 280:40578–40582CrossRefPubMedGoogle Scholar
  59. Randall TD, Carragher DM, Rangel-Moreno J (2008) Development of secondary lymphoid organs. Annu Rev Immunol 26:627–650CrossRefPubMedGoogle Scholar
  60. Rennert PD, Browning JL, Mebius R, Mackay F, Hochman PS (1996) Surface lymphotoxin alpha/beta complex is required for the development of peripheral lymphoid organs. J Exp Med 184:1999–2006CrossRefPubMedGoogle Scholar
  61. Rennert P, Browning J, Hochman P (1997) Selective disruption of lymphotoxin ligands reveals a novel set of mucosal lymph nodes and unique effects on lymph node cellular organization. Int Immunol 9:1627–1639CrossRefPubMedGoogle Scholar
  62. Rennert P, James D, Mackay F, Browning J, Hochman P (1998) Lymph node genesis is induced by signaling through the Lymphotoxin b Receptor. Immunity 9:71–79CrossRefPubMedGoogle Scholar
  63. Saccani S, Pantano S, Natoli G (2003) Modulation of NF-kappaB activity by exchange of dimers. Mol Cell 11:1563–1574CrossRefPubMedGoogle Scholar
  64. Sun SC, Ley SC (2008) New insights into NF-kappaB regulation and function. Trends Immunol 29:469–478CrossRefPubMedGoogle Scholar
  65. Sun Z, Unutmaz D, Zou Y-R, Sunshine M, Pierani A, Brenner-Morton S, Mebius R, Littman D (2000) Requirement for RORa in thymocyte survival and lymphocyte organ development. Science 288:2369–2372CrossRefPubMedGoogle Scholar
  66. Suto H, Katakai T, Sugai M, Kinashi T, Shimizu A (2009) CXCL13 production by an established lymph node stromal cell line via lymphotoxin-beta receptor engagement involves the cooperation of multiple signaling pathways. Int Immunol 21:467–476CrossRefPubMedGoogle Scholar
  67. Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733CrossRefPubMedGoogle Scholar
  68. Vallabhapurapu S, Matsuzawa A, Zhang W, Tseng PH, Keats JJ, Wang H, Vignali DA, Bergsagel PL, Karin M (2008) Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 9:1364–1370CrossRefPubMedGoogle Scholar
  69. Vondenhoff MF, Greuter M, Goverse G, Elewaut D, Dewint P, Ware CF, Hoorweg K, Kraal G, Mebius RE (2009) LTbetaR signaling induces cytokine expression and up-regulates lymphangiogenic factors in lymph node anlagen. J Immunol 182:5439–5445CrossRefPubMedGoogle Scholar
  70. Weih F, Caamaño J (2003) Regulation of secondary lymphoid organ development by the NF-kB signal transduction pathway. Imm Rev 195:91–105CrossRefGoogle Scholar
  71. Weih F, Carrasco D, Durham S, Barton D, Rizzo C, Ryseck R, Lira S, Bravo R (1995) Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-kB/Rel family. Cell 80:331–340CrossRefPubMedGoogle Scholar
  72. Weih DS, Yilmaz ZB, Weih F (2001) Essential role of RelB in germinal center and marginal zone formation and proper expression of homing chemokines. J Immunol 167:1909–1919PubMedGoogle Scholar
  73. White A, Carragher D, Parnell S, Msaki A, Perkins N, Lane P, Jenkinson E, Anderson G, Caamano JH (2007) Lymphotoxin a-dependent and -independent signals regulate stromal organizer cell homeostasis during lymph node organogenesis. Blood 110:1950–1959CrossRefPubMedGoogle Scholar
  74. Xiao G, Harhaj E, Sun S-C (2001) NF-kB-inducing kinase regulates the processing of NF-kB2 p100. Mol Cell 7:401–409CrossRefPubMedGoogle Scholar
  75. Yamada T, Mitani T, Yorita K, Uchida D, Matsushima A, Iwamasa K, Fujita S, Matsumoto M 2000 Abnormal immune function of hemopoietic cells from alymphoplasia (aly) mice, a natural strain with mutant NF-kB-inducing kinase. J Immunol 165:804–812PubMedGoogle Scholar
  76. Yilmaz ZB, Weih DS, Sivakumar V, WeihF (2003) RelB is required for Peyer’s patch development: differential regulation of p52-RelB by lymphotoxin and TNF. Embo J 22:121–130CrossRefPubMedGoogle Scholar
  77. Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S, Gruss P (1999) Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397:702–706CrossRefPubMedGoogle Scholar
  78. Yoshida H, Naito A, Inoue J, Satoh M, Santee-Cooper SM, Ware CF, Togawa A, Nishikawa S (2002) Different cytokines induce surface lymphotoxin-alphabeta on IL-7 receptor-alpha cells that differentially engender lymph nodes and Peyer’s patches. Immunity 17:823–833CrossRefPubMedGoogle Scholar
  79. Zaph C, Troy AE, Taylor BC, Berman-Booty LD, Guild KJ, Du Y, Yost EA, Gruber AD, May MJ, Greten FR, Eckmann L, Karin M, Artis D (2007) Epithelial-cell-intrinsic IKK-beta expression regulates intestinal immune homeostasis. Nature 446:552–556CrossRefPubMedGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  • Cecile Benezech
    • 1
  • Emma Mader
    • 1
  • Falk Weih
    • 2
  • Jorge Caamaño
    • 1
    Email author
  1. 1.School of Immunity and Infection, IBR-MRC Centre for Immune Regulation, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
  2. 2.Leibniz-Institute for Age Research, Fritz-Lipmann-InstituteJenaGermany

Personalised recommendations