Skip to main content

Adipocyte–Brain: Crosstalk

  • Chapter
  • First Online:
Sensory and Metabolic Control of Energy Balance

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 52))

Abstract

The initial discovery of leptin, an appetite-suppressing hormone originating from fat tissue, substantially supported the idea that fat-borne factors act on the brain to regulate food intake and energy expenditure. Since then, a growing number of cytokines have been found to be released from adipose tissue, thus acting in an endocrine manner. These adipocytokines include not only, e.g., adiponectin, apelin, resistin, and visfatin, but also inflammatory cytokines and steroid hormones such as estrogens and glucocorticoids. They are secreted from their adipose depots and differ in terms of release stimuli, downstream signaling, and their action on the brain. Clearly, adipocytokines play a prominent role in the central control of body weight, and the deregulation of this circuit may lead to the development of obesity and related disorders. In this chapter, we will focus on crosstalk mechanisms and the deregulation of adipocytokines at the expression level and/or sites of central action that eventually will lead to the development and perpetuation of obesity and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi J, Kumar C, Zhang Y, Mann M (2007) In-depth analysis of the adipocyte proteome by mass spectrometry and bioinformatics. Mol Cell Proteomics 6:1257–1273

    Article  PubMed  CAS  Google Scholar 

  • Ahima RS, Saper CB, Flier JS, Elmquist JK (2000) Leptin regulation of neuroendocrine systems. Front Neuroendocrinol 21:263–307

    Article  PubMed  CAS  Google Scholar 

  • Ahima RS, Qi Y, Singhal NS, Jackson MB, Scherer PE (2006) Brain adipocytokine action and metabolic regulation. Diabetes 55(Suppl 2):S145–S154

    Article  PubMed  CAS  Google Scholar 

  • Anand BK, Brobeck JR (1951) Hypothalamic control of food intake in rats and cats. Yale J Biol Med 24:123–140

    PubMed  CAS  Google Scholar 

  • Anonymous (1983) Nutrition classics. The anatomical record, volume 78, 1940: hypothalamic lesions and adiposity in the rat 1983. Nutr Rev 41:124–127

    Google Scholar 

  • Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM (1996) Leptin enters the brain by a saturable system independent of insulin. Peptides 17:305–311

    Article  PubMed  CAS  Google Scholar 

  • Barnikol-Watanabe S, Gross NA, Gotz H, Henkel T, Karabinos A, Kratzin H, Barnikol HU, Hilschmann N (1994) Human protein NEFA, a novel DNA binding/EF-hand/leucine zipper protein. Molecular cloning and sequence analysis of the cDNA, isolation and characterization of the protein. Biol Chem Hoppe Seyler 375:497–512

    Article  PubMed  CAS  Google Scholar 

  • Baskin DG, Schwartz MW, Seeley RJ, Woods SC, D P Jr, Breininger JF, Jonak Z, Schaefer J, Krouse M, Burghardt C, Campfield LA, Burn P, Kochan JP (1999) Leptin receptor long-form splice-variant protein expression in neuron cell bodies of the brain and co-localization with neuropeptide Y mRNA in the arcuate nucleus. J Histochem Cytochem 47:353–362

    Article  PubMed  CAS  Google Scholar 

  • Begley DJ (1994) Peptides and the blood–brain barrier: the status of our understanding. Ann N Y Acad Sci 739:89–100

    Article  PubMed  CAS  Google Scholar 

  • Berg AH, Combs TP, Du X, Brownlee M, Scherer PE (2001) The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 7:947–953

    Article  PubMed  CAS  Google Scholar 

  • Berndt J, Kloting N, Kralisch S, Kovacs P, Fasshauer M, Schon MR, Stumvoll M, Blüher M (2005) Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes 54:2911–2916

    Article  PubMed  CAS  Google Scholar 

  • Blüher S, Mantzoros CS (2007) Leptin in reproduction. Curr Opin Endocrinol Diabetes Obes 14:458–464

    Article  PubMed  Google Scholar 

  • Bodles AM, Banga A, Rasouli N, Ono F, Kern PA, Owens RJ (2006) Pioglitazone increases secretion of high-molecular-weight adiponectin from adipocytes. Am J Physiol Endocrinol Metab 291:E1100–E1105

    Article  PubMed  CAS  Google Scholar 

  • Brailoiu GC, Dun SL, Brailoiu E, Inan S, Yang J, Chang JK, Dun NJ (2007) Nesfatin-1: distribution and interaction with a G protein-coupled receptor in the rat brain. Endocrinology 148:5088–5094

    Article  PubMed  CAS  Google Scholar 

  • Brennan AM, Mantzoros CS (2006) Drug insight: the role of leptin in human physiology and pathophysiology – emerging clinical applications. Nat Clin Pract Endocrinol Metab 2:318–327

    Article  PubMed  CAS  Google Scholar 

  • Brennan AM, Mantzoros CS (2007) Leptin and adiponectin: their role in diabetes. Curr Diab Rep 7:1–2

    Article  PubMed  Google Scholar 

  • Brobeck JR (1946) Mechanism of the development of obesity in animals with hypothalamic lesions. Physiol Rev 25:541–559

    Google Scholar 

  • Butler AA, Cone RD (2002) The melanocortin receptors: lessons from knockout models. Neuropeptides 36:77–84

    Article  PubMed  CAS  Google Scholar 

  • Butler AA, Kesterson RA, Khong K, Cullen MJ, Pelleymounter MA, Dekoning J, Baetscher M, Cone RD (2000) A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 141:3518–3521

    Article  PubMed  CAS  Google Scholar 

  • Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P (1995) Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269:546–549

    Article  PubMed  CAS  Google Scholar 

  • Chan JL, Mantzoros CS (2005) Role of leptin in energy-deprivation states: normal human physiology and clinical implications for hypothalamic amenorrhoea and anorexia nervosa. Lancet 366:74–85

    Article  PubMed  CAS  Google Scholar 

  • Chan JL, Matarese G, Shetty GK, Raciti P, Kelesidis I, Aufiero D, De Rosa V, Perna F, Fontana S, Mantzoros CS (2006) Differential regulation of metabolic, neuroendocrine, and immune function by leptin in humans. Proc Natl Acad Sci USA 103:8481–8486

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491–495

    Article  PubMed  CAS  Google Scholar 

  • Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan XM, Yu H, Rosenblum CI, Vongs A, Feng Y, Cao L, Metzger JM, Strack AM, Camacho RE, Mellin TN, Nunes CN, Min W, Fisher J, Gopal-Truter S, MacIntyre DE, Chen HY, Van der Ploeg LH (2000) Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet 26:97–102

    Article  PubMed  CAS  Google Scholar 

  • Choi KC, Ryu OH, Lee KW, Kim HY, Seo JA, Kim SG, Kim NH, Choi DS, Baik SH, Choi KM (2005) Effect of PPAR-alpha and -gamma agonist on the expression of visfatin, adiponectin, and TNF-alpha in visceral fat of OLETF rats. Biochem Biophys Res Commun 336:747–753

    Article  PubMed  CAS  Google Scholar 

  • Cline MA, Nandar W, Prall BC, Bowden CN, Denbow DM (2008) Central visfatin causes orexigenic effects in chicks. Behav Brain Res 186:293–297

    Article  PubMed  CAS  Google Scholar 

  • Coleman DL (1973) Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 9:294–298

    Article  PubMed  CAS  Google Scholar 

  • Coope A, Milanski M, Araujo EP, Tambascia M, Saad MJ, Geloneze B, Velloso LA (2008) AdipoR1 mediates the anorexigenic and insulin/leptin-like actions of adiponectin in the hypothalamus. FEBS Lett 582:1471–1476

    Article  PubMed  CAS  Google Scholar 

  • Douglas AJ, Johnstone LE, Leng G (2007) Neuroendocrine mechanisms of change in food intake during pregnancy: a potential role for brain oxytocin. Physiol Behav 91:352–365

    Article  PubMed  CAS  Google Scholar 

  • Dridi S, Taouis M (2009) Adiponectin and energy homeostasis: consensus and controversy. J Nutr Biochem 20:831–839

    Article  PubMed  CAS  Google Scholar 

  • Elmquist JK, Bjorbaek C, Ahima RS, Flier JS, Saper CB (1998) Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol 395:535–547

    Article  PubMed  CAS  Google Scholar 

  • Elmquist JK, Elias CF, Saper CB (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22:221–232

    Article  PubMed  CAS  Google Scholar 

  • Filippatos TD, Derdemezis CS, Gazi IF, Lagos K, Kiortsis DN, Tselepis AD, Elisaf MS (2008) Increased plasma visfatin levels in subjects with the metabolic syndrome. Eur J Clin Invest 38:71–72

    Article  PubMed  CAS  Google Scholar 

  • Fliedner S, Schulz C, Lehnert H (2006) Brain uptake of intranasally applied radioiodinated leptin in wistar rats. Endocrinology 147:2088–2094

    Article  PubMed  CAS  Google Scholar 

  • Fort P, Salvert D, Hanriot L, Jego S, Shimizu H, Hashimoto K, Mori M, Luppi PH (2008) The satiety molecule nesfatin-1 is co-expressed with melanin concentrating hormone in tuberal hypothalamic neurons of the rat. Neuroscience 155:174–181

    Article  PubMed  CAS  Google Scholar 

  • Fry M, Smith PM, Hoyda TD, Duncan M, Ahima RS, Sharkey KA, Ferguson AV (2006) Area postrema neurons are modulated by the adipocyte hormone adiponectin. J Neurosci 20;26:9695–9702

    Article  Google Scholar 

  • Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, Matsuki Y, Murakami M, Ichisaka T, Murakami H, Watanabe E, Takagi T, Akiyoshi M, Ohtsubo T, Kihara S, Yamashita S, Makishima M, Funahashi T, Yamanaka S, Hiramatsu R, Matsuzawa Y, Shimomura I (2005) Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307:426–430

    Article  PubMed  CAS  Google Scholar 

  • Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, Matsuki Y, Murakami M, Ichisaka T, Murakami H, Watanabe E, Takagi T, Akiyoshi M, Ohtsubo T, Kihara S, Yamashita S, Makishima M, Funahashi T, Yamanaka S, Hiramatsu R, Matsuzawa Y, Shimomura I (2007) Retraction. Science 318:565

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez R, Tiwari A, Unniappan S (2009) Pancreatic beta cells colocalize insulin and pronesfatin immunoreactivity in rodents. Biochem Biophys Res Commun 381:643–648

    Article  PubMed  CAS  Google Scholar 

  • Guillod-Maximin E, Roy AF, Vacher CM, Aubourg A, Bailleux V, Lorsignol A, Penicaud L, Parquet M, Taouis M (2009) Adiponectin receptors are expressed in hypothalamus and colocalized with proopiomelanocortin and neuropeptide Y in rodent arcuate neurons. J Endocrinol 200:93–105

    Article  PubMed  CAS  Google Scholar 

  • Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546

    Article  PubMed  CAS  Google Scholar 

  • Hallschmid M, Randeva H, Tan BK, Kern W, Lehnert H (2009) Relationship between cerebrospinal fluid visfatin (PBEF/Nampt) levels and adiposity in humans. Diabetes 58:637–640

    Article  PubMed  CAS  Google Scholar 

  • Hervey GR (1959) The effects of lesions in the hypothalamus in parabiotic rats. J Physiol 145:336–352

    PubMed  CAS  Google Scholar 

  • Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD, Smith FJ, Campfield LA, Burn P, Lee F (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88:131–141

    Article  PubMed  CAS  Google Scholar 

  • Inhoff T, Stengel A, Peter L, Goebel M, Tache Y, Bannert N, Wiedenmann B, Klapp BF, Monnikes H, Kobelt P (2009) Novel insight in distribution of nesfatin-1 and phospho-mTOR in the arcuate nucleus of the hypothalamus of rats. Peptides 31:257–262

    Article  PubMed  Google Scholar 

  • Jia SH, Li Y, Parodo J, Kapus A, Fan L, Rotstein OD, Marshall JC (2004) Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest 113:1318–1327

    PubMed  CAS  Google Scholar 

  • Jobst EE, Enriori PJ, Cowley MA (2004) The electrophysiology of feeding circuits. Trends Endocrinol Metab 15:488–499

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki T, Yamauchi T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26:439–451

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki T, Yamauchi T, Kubota N (2008) The physiological and pathophysiological role of adiponectin and adiponectin receptors in the peripheral tissues and CNS. FEBS Lett 582:74–80

    Article  PubMed  CAS  Google Scholar 

  • Kelesidis T, Mantzoros CS (2006) The emerging role of leptin in humans. Pediatr Endocrinol Rev 3:239–248

    PubMed  Google Scholar 

  • Kennedy GC (1953) The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond B Biol Sci 140:578–596

    Article  PubMed  CAS  Google Scholar 

  • Kitani T, Okuno S, Fujisawa H (2003) Growth phase-dependent changes in the subcellular localization of pre-B-cell colony-enhancing factor. FEBS Lett 544:74–78

    Article  PubMed  CAS  Google Scholar 

  • Kohno D, Nakata M, Maejima Y, Shimizu H, Sedbazar U, Yoshida N, Dezaki K, Onaka T, Mori M, Yada T (2008) Nesfatin-1 neurons in paraventricular and supraoptic nuclei of the rat hypothalamus coexpress oxytocin and vasopressin and are activated by refeeding. Endocrinology 149:1295–1301

    Article  PubMed  CAS  Google Scholar 

  • Kos K, Harte AL, da Silva NF, Tonchev A, Chaldakov G, James S, Snead DR, Hoggart B, O'Hare JP, McTernan PG, Kumar S (2007) Adiponectin and resistin in human cerebrospinal fluid and expression of adiponectin receptors in the human hypothalamus. J Clin Endocrinol Metab 92:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, Kozono H, Takamoto I, Okamoto S, Shiuchi T, Suzuki R, Satoh H, Tsuchida A, Moroi M, Sugi K, Noda T, Ebinuma H, Ueta Y, Kondo T, Araki E, Ezaki O, Nagai R, Tobe K, Terauchi Y, Ueki K, Minokoshi Y, Kadowaki T (2007) Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab 6:55–68

    Article  PubMed  CAS  Google Scholar 

  • Kusminski CM, McTernan PG, Schraw T, Kos K, O'Hare JP, Ahima R, Kumar S, Scherer PE (2007) Adiponectin complexes in human cerebrospinal fluid: distinct complex distribution from serum. Diabetologia 50:634–642

    Article  PubMed  CAS  Google Scholar 

  • Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM (1996) Abnormal splicing of the leptin receptor in diabetic mice. Nature 379:632–635

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Chan JL, Sourlas E, Raptopoulos V, Mantzoros CS (2006) Recombinant methionyl human leptin therapy in replacement doses improves insulin resistance and metabolic profile in patients with lipoatrophy and metabolic syndrome induced by the highly active antiretroviral therapy. J Clin Endocrinol Metab 91:2605–2611

    Article  PubMed  CAS  Google Scholar 

  • Leshan RL, Bjornholm M, Münzberg H, Myers MG Jr (2006) Leptin receptor signaling and action in the central nervous system. Obesity (Silver Spring) 14(Suppl 5):208S–212S

    Article  CAS  Google Scholar 

  • Maddineni S, Metzger S, Ocon O, Hendricks G III, Ramachandran R (2005) Adiponectin gene is expressed in multiple tissues in the chicken: food deprivation influences adiponectin messenger ribonucleic acid expression. Endocrinology 146:4250–4256

    Article  PubMed  CAS  Google Scholar 

  • Marsh DJ, Hollopeter G, Huszar D, Laufer R, Yagaloff KA, Fisher SL, Burn P, Palmiter RD (1999) Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat Genet 21:119–122

    Article  PubMed  CAS  Google Scholar 

  • Mayer J (1955) Regulation of energy intake and the body weight: the glucostatic theory and the lipostatic hypothesis. Ann N Y Acad Sci 63:15–43

    Article  PubMed  CAS  Google Scholar 

  • McGlothlin JR, Gao L, Lavoie T, Simon BA, Easley RB, Ma SF, Rumala BB, Garcia JG, Ye SQ (2005) Molecular cloning and characterization of canine pre-B-cell colony-enhancing factor. Biochem Genet 43:127–141

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Titani K, Kurosawa Y, Kanai Y (1992) Molecular cloning of nucleobindin, a novel DNA-binding protein that contains both a signal peptide and a leucine zipper structure. Biochem Biophys Res Commun 187:375–380

    Article  PubMed  CAS  Google Scholar 

  • Mountjoy KG, Kong PL, Taylor JA, Willard DH, Wilkison WO (2001) Melanocortin receptor-mediated mobilization of intracellular free calcium in HEK293 cells. Physiol Genomics 5:11–19

    PubMed  CAS  Google Scholar 

  • Münzberg H (2008) Differential leptin access into the brain – a hierarchical organization of hypothalamic leptin target sites? Physiol Behav 94:664–669

    Article  PubMed  Google Scholar 

  • Myers MG, Cowley MA, Münzberg H (2008) Mechanisms of leptin action and leptin resistance. Annu Rev Physiol 70:537–556

    Article  PubMed  CAS  Google Scholar 

  • Oh-I S, Shimizu H, Sato T, Uehara Y, Okada S, Mori M (2005) Molecular mechanisms associated with leptin resistance: n-3 polyunsaturated fatty acids induce alterations in the tight junction of the brain. Cell Metab 1:331–341

    Article  PubMed  CAS  Google Scholar 

  • Oh-I S, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguchi H, Yamamoto M, Imaki T, Hashimoto K, Tsuchiya T, Monden T, Horiguchi K, Yamada M, Mori M (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443:709–712

    Article  PubMed  CAS  Google Scholar 

  • Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I, Barsh GS (1997) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278:135–138

    Article  PubMed  CAS  Google Scholar 

  • Pan W, Kastin AJ (2007) Adipokines and the blood–brain barrier. Peptides 28:1317–1330

    Article  PubMed  CAS  Google Scholar 

  • Pan W, Tu H, Kastin AJ (2006) Differential BBB interactions of three ingestive peptides: obestatin, ghrelin, and adiponectin. Peptides 27:911–916

    Article  PubMed  CAS  Google Scholar 

  • Pan W, Hsuchou H, Kastin AJ (2007) Nesfatin-1 crosses the blood–brain barrier without saturation. Peptides 28:2223–2228

    Article  PubMed  CAS  Google Scholar 

  • Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F (1995) Effects of the obese gene product on body weight regulation in ob/ob mice [see comments]. Science 269:540–543

    Article  PubMed  CAS  Google Scholar 

  • Poeggeler B, Schulz C, Pappolla MA, Bodo E, Tiede S, Lehnert H, Paus R (2009) Leptin and the skin: a new frontier. Exp Dermatol (in press)

    Google Scholar 

  • Price TO, Samson WK, Niehoff ML, Banks WA (2007) Permeability of the blood–brain barrier to a novel satiety molecule nesfatin-1. Peptides 28:2372–2381

    Article  PubMed  CAS  Google Scholar 

  • Price CJ, Hoyda TD, Samson WK, Ferguson AV (2008) Nesfatin-1 influences the excitability of paraventricular nucleus neurones. J Neuroendocrinol 20:245–250

    Article  PubMed  CAS  Google Scholar 

  • Qi Y, Takahashi N, Hileman SM, Patel HR, Berg AH, Pajvani UB, Scherer PE, Ahima RS (2004) Adiponectin acts in the brain to decrease body weight. Nat Med 10:524–529

    Article  PubMed  CAS  Google Scholar 

  • Ramanjaneya M, Chen J, Brown J, Patel S, Tan B, Randeva H (2010) Identification of nesfatin-1/NUCB2 as a novel depot-specific adipokine in human and murine adipose tissue: altered levels in obesity and food deprivation. pp 19, 131 (Abstract)

    Google Scholar 

  • Revollo JR, Grimm AA, Imai S (2004) The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 279:50754–50763

    Article  PubMed  CAS  Google Scholar 

  • Revollo JR, Korner A, Mills KF, Satoh A, Wang T, Garten A, Dasgupta B, Sasaki Y, Wolberger C, Townsend RR, Milbrandt J, Kiess W, Imai S (2007) Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab 6:363–375

    Article  PubMed  CAS  Google Scholar 

  • Rongvaux A, Shea RJ, Mulks MH, Gigot D, Urbain J, Leo O, Andris F (2002) Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur J Immunol 32:3225–3234

    Article  PubMed  CAS  Google Scholar 

  • Rongvaux A, Galli M, Denanglaire S, Van Gool F, Dreze PL, Szpirer C, Bureau F, Andris F, Leo O (2008) Nicotinamide phosphoribosyl transferase/pre-B cell colony-enhancing factor/visfatin is required for lymphocyte development and cellular resistance to genotoxic stress. J Immunol 181:4685–4695

    PubMed  CAS  Google Scholar 

  • Samal B, Sun Y, Stearns G, Xie C, Suggs S, McNiece I (1994) Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol Cell Biol 14:1431–1437

    PubMed  CAS  Google Scholar 

  • Schulz C, Paulus K, Lehnert H (2004) Central nervous and metabolic effects of intranasally applied leptin. Endocrinology 145:2696–2701

    Article  PubMed  CAS  Google Scholar 

  • Schulz C, Paulus K, Lobmann R, Dallman MF, Lehnert H (2009) Endogenous ACTH, not only {alpha}-melanocyte stimulating hormone, reduces food intake mediated by hypothalamic mechanisms. Am J Physiol Endocrinol Metab (in press)

    Google Scholar 

  • Schwartz MW (2006) Central nervous system regulation of food intake. Obesity (Silver Spring) 14(Suppl 1):1S–8S

    Article  CAS  Google Scholar 

  • Schwartz MW, Woods SC, D P Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671

    PubMed  CAS  Google Scholar 

  • Shimizu H, Oh I, Okada S, Mori M (2009a) Nesfatin-1: an overview and future clinical application. Endocr J 56:537–543

    Article  PubMed  CAS  Google Scholar 

  • Shimizu H, Oh I, Hashimoto K, Nakata M, Yamamoto S, Yoshida N, Eguchi H, Kato I, Inoue K, Satoh T, Okada S, Yamada M, Yada T, Mori M (2009b) Peripheral administration of nesfatin-1 reduces food intake in mice: the leptin-independent mechanism. Endocrinology 150:662–671

    Article  PubMed  CAS  Google Scholar 

  • Shklyaev S, Aslanidi G, Tennant M, Prima V, Kohlbrenner E, Kroutov V, Campbell-Thompson M, Crawford J, Shek EW, Scarpace PJ, Zolotukhin S (2003) Sustained peripheral expression of transgene adiponectin offsets the development of diet-induced obesity in rats. Proc Natl Acad Sci USA 100:14217–14222

    Article  PubMed  CAS  Google Scholar 

  • Spranger J, Verma S, Gohring I, Bobbert T, Seifert J, Sindler AL, Pfeiffer A, Hileman SM, Tschop M, Banks WA (2006) Adiponectin does not cross the blood–brain barrier but modifies cytokine expression of brain endothelial cells. Diabetes 55:141–147

    Article  PubMed  CAS  Google Scholar 

  • Steiner DF, Smeekens SP, Ohagi S, Chan SJ (1992) The new enzymology of precursor processing endoproteases. J Biol Chem 267:23435–23438

    PubMed  CAS  Google Scholar 

  • Stengel A, Goebel M, Yakubov I, Wang L, Witcher D, Coskun T, Tache Y, Sachs G, Lambrecht NW (2009a) Identification and characterization of nesfatin-1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. Endocrinology 150:232–238

    Article  PubMed  CAS  Google Scholar 

  • Stengel A, Goebel M, Wang L, Rivier J, Kobelt P, Monnikes H, Lambrecht NW, Tache Y (2009b) Central nesfatin-1 reduces dark-phase food intake and gastric emptying in rats: differential role of corticotropin-releasing factor2 receptor. Endocrinology 150:4911–4919

    Article  PubMed  CAS  Google Scholar 

  • Strand FL (1999) Neuropeptides: regulators of physiological processes. MIT, Cambridge

    Google Scholar 

  • Tanaka M, Nozaki M, Fukuhara A, Segawa K, Aoki N, Matsuda M, Komuro R, Shimomura I (2007) Visfatin is released from 3T3-L1 adipocytes via a non-classical pathway. Biochem Biophys Res Commun 359:194–201

    Article  PubMed  CAS  Google Scholar 

  • Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–1271

    Article  PubMed  CAS  Google Scholar 

  • Tomas E, Tsao TS, Saha AK, Murrey HE, Zhang CC, Itani SI, Lodish HF, Ruderman NB (2002) Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci USA 99:16309–16313

    Article  PubMed  CAS  Google Scholar 

  • Tsuchida A, Yamauchi T, Takekawa S, Hada Y, Ito Y, Maki T, Kadowaki T (2005) Peroxisome proliferator-activated receptor (PPAR) alpha activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARalpha, PPARgamma, and their combination. Diabetes 54:3358–3370

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson M, Brown R, Imran SA, Ur E (2007) Adipokine gene expression in brain and pituitary gland. Neuroendocrinology 86:191–209

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946

    Article  PubMed  CAS  Google Scholar 

  • Yildiz BO, Suchard MA, Wong ML, McCann SM, Licinio J (2004) Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proc Natl Acad Sci USA 101:10434–10439

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Lehnert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Schulz, C., Paulus, K., Lehnert, H. (2011). Adipocyte–Brain: Crosstalk. In: Meyerhof, W., Beisiegel, U., Joost, HG. (eds) Sensory and Metabolic Control of Energy Balance. Results and Problems in Cell Differentiation, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14426-4_16

Download citation

Publish with us

Policies and ethics