Skip to main content

Microscopic Emission Theories

  • Chapter
  • First Online:
Theory of Particle and Cluster Emission

Part of the book series: Lecture Notes in Physics ((LNP,volume 819))

  • 832 Accesses

Abstract

In this chapter, devoted to microscopic approaches, we derive the general expression of the decay width, known as the Fermi golden rule, by using the time-dependent Schrödinger equation. We also introduce the equivalent surface formula containing the preformation amplitude. Then, we show that these relations can be recovered within the reaction Feshbach theory and R-matrix approach. We describe the Resonating Group Method, as the most general microscopic approach to analyze the emission of composite objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harada, K., Rauscher, E.A.: Unified theory of alpha decay. Phys. Rev. 169, 818–824 (1968)

    Article  ADS  Google Scholar 

  2. Fliessbach, T., Mang, H.J.: On absolute values of α-decay rates. Nucl. Phys. A 263, 75–85 (1976)

    Article  ADS  Google Scholar 

  3. Wildermuth, K., Fernandez, F., Kanellopoulos, E.J., Sünkel, W.: J. Phys. G 6, 603–617 (1980)

    Article  ADS  Google Scholar 

  4. Fox, L.: Numerical Solution of Ordinary and Partial Differential Equations. Pergamon Press, New York (1962)

    MATH  Google Scholar 

  5. Ixaru, L.: Numerical Methods for Differential Equations and Applications. Reidel, Boston (1984)

    MATH  Google Scholar 

  6. Mişicu, S., Cârjan, N.: Proton decay from excited states in sopherical nuclei. J. Phys. G24, 1745–1755 (1998)

    Article  ADS  Google Scholar 

  7. Talou, P., Strottman, D., Cârjan, N.: Exact calculation of proton decay rates from excited states in spherical nuclei. Phys. Rev. C 60, 054318/1–7 (1999)

    Google Scholar 

  8. Talou, P., Cârjan, N., Negrevergne, C., Strottman, D.: Exact dynamical approach to spherical ground-state proton emission. Phys. Rev. C 62, 014609/1–4 (2000)

    Google Scholar 

  9. Talou, P., Cârjan, N., Strottman, D.: Time-dependent approach to bidimensional quantum tunneling: application to the proton emission from deformed nuclei. Nucl. Phys. A 647, 21–46 (1999)

    Article  ADS  Google Scholar 

  10. Cârjan, N., Rizea, M., Strottman, D.: Improved boundary conditions for the decay of low lying metastable proton states in a time-dependent approach. Comput. Phys. Commun. 173, 41–60 (2005)

    Article  ADS  Google Scholar 

  11. Tanimura, O., Fliessbach, T.: Dynamic model for alpha particle emission during fission. Z. Phys. A 328, 475–486 (1987)

    ADS  Google Scholar 

  12. Canto, F., Brink, D.M.: Microscopic description of the collision between nuclei. Nucl. Phys. A 279, 85–96 (1977)

    Article  ADS  Google Scholar 

  13. Fliessbach, T.: The reduced width amplitude in the reaction theory for composite particles. Z. Phys. A 272, 39–46 (1975)

    Article  ADS  Google Scholar 

  14. Fliessbach, T., Walliser, H.: The structure of the resonanting group equation. Nucl. Phys. A 377, 84–104 (1982)

    Article  ADS  Google Scholar 

  15. Feshbach, H.: Unified theory of nuclear reactions. Ann. Phys. (NY) 5, 357–390 (1958)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Săndulescu, A., Silişteanu, I., Wünsch, R.: Alpha decay within Feshbach theory of nuclear reactions. Nucl. Phys. A 305, 205–212 (1978)

    Article  Google Scholar 

  17. Teichmann, T., Wigner, E.P.: Sum rules in the dispersion theory of nuclear reactions. Phys. Rev. 87, 123–135 (1952)

    Article  ADS  MATH  Google Scholar 

  18. Thomas, R.G.: A formulation of the theory of alpha-particle decay from time-independent equations. Prog. Theor. Phys. 12, 253–264 (1954)

    Article  ADS  MATH  Google Scholar 

  19. Lane, A.M., Thomas, R.G.: R-Matrix theory of nuclear reactions. Rev. Mod. Phys. 30, 257–353 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  20. Kruppa, A.T., Nazarewicz, W.: Gamow and R-Matrix approach to proton emitting nuclei. Phys. Rev. C 69, 054311/1–11 (2004)

    Google Scholar 

  21. Kryger, R.A., et al.: Two-proton emission from the ground state of 12O. Phys. Rev. Lett. 74, 860–863 (1995)

    Article  ADS  Google Scholar 

  22. Barker, F.C.: Width of the 12O ground state. Phys. Rev. C 59, 535–538 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doru S. Delion .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Delion, D.S. (2010). Microscopic Emission Theories. In: Theory of Particle and Cluster Emission. Lecture Notes in Physics, vol 819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14406-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14406-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14405-9

  • Online ISBN: 978-3-642-14406-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics