Advertisement

Trend Mining in Social Networks: A Study Using a Large Cattle Movement Database

  • Puteri N. E. Nohuddin
  • Rob Christley
  • Frans Coenen
  • Christian Setzkorn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6171)

Abstract

This paper reports on a mechanism to identify temporal spatial trends in social networks. The trends of interest are defined in terms of the occurrence frequency of time stamped patterns across social network data. The paper proposes a technique for identifying such trends founded on the Frequent Pattern Mining paradigm. The challenge of this technique is that, given appropriate conditions, many trends may be produced; and consequently the analysis of the end result is inhibited. To assist in the analysis, a Self Organising Map (SOM) based approach, to visualizing the outcomes, is proposed. The focus for the work is the social network represented by the UK’s cattle movement data base. However, the proposed solution is equally applicable to other large social networks.

Keywords

Social Network Analysis Trend Mining Trend Visualization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggrawal, C., Yu, P.: A Condensation Approach to Privacy Preserving Data Mining. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 183–199. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Read, J.M., Eames, K.T.D., Edmunds, W.J.: Dynamic Social Networks and the implications for the spead of infectious disease. J. R. Soc. Interface 5, 1001–1007 (2008)CrossRefGoogle Scholar
  3. 3.
    Chalabi, Z., Berrached, N., Kharchouche, N., Ghellemallah, Y., Mansour, M., Mouhadjer, H.: Classification of the Medical Images by the Kohonen Network SOM and LVQ. Journal of Applied Sciences 8(7), 1149–1158 (2008)CrossRefGoogle Scholar
  4. 4.
    Coenen, F.P., Leng, P., Ahmed, S.: Data Structures for association Rule Mining: T-trees and P-trees. IEEE Transactions on Data and Knowledge Engineering 16(6), 774–778 (2004)CrossRefGoogle Scholar
  5. 5.
    Coenen, F.P., Goulbourne, G., Leng, P.: Computing Association Rules Using Partial Totals. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 54–66. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Cottrell, M., Rousset, P.: A powerful Tool for Analyzing and Representing Multidimensional Quantitative and Qualitative Data. In: Cabestany, J., Mira, J., Moreno-Díaz, R. (eds.) IWANN 1997. LNCS, vol. 1240, pp. 861–871. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  7. 7.
    Domingos, P.: Mining Social Networks for Viral Marketing. IEEE Intelligent Systems 20(1), 80–82 (2005)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Green, D.M., Kao, R.R.: Data quality of the Cattle Tracing System in Great Britain. Veterinary Record 161(13), 439–443 (2007)Google Scholar
  9. 9.
    Khan, M.S., Coenen, F., Reid, D., Tawfik, H., Patel, R., Lawson, A.: A Sliding Windows based Dual Support Framework for Discovering Emerging Trends from Temporal Data. KBS Journal (to be appeared 2010)Google Scholar
  10. 10.
    Kohonen, T.: The Self Organizing Maps. Neurocomputing 21, 1–6 (1998)zbMATHCrossRefGoogle Scholar
  11. 11.
    Kohonen, T.: The Self Organizing Maps. Series in Information Sciences, vol. 30. Springer, Heidelberg (1995)Google Scholar
  12. 12.
    Kohonen, T., Oja, E., Simula, O., Visa, A., Kangas, J.: Engineering applications of the Self-Organizing Map. Proceedings of the IEEE 84(10), 1358–1384 (1996)CrossRefGoogle Scholar
  13. 13.
    Krause, G., Blackmore, C., Wiersma, S., Lesneski, C., Woods, C.W., Rosenstein, N.E., Hopkins, R.S.: Marijuana use and Social Networks in a Community Outbreak of Meningococcal Disease. South Medical Journal 94(5), 482–485 (2001)Google Scholar
  14. 14.
    Lauw, H., Lim, E., Pang, H., Tan, T.: Social Network Discovery by Mining Spatio-Temporal Events. Computational & Mathematical Organization Theory 11(2), 97–118 (2005)zbMATHCrossRefGoogle Scholar
  15. 15.
    McCallum, A., Corrada-Emmanuel, A., Wang, X.: Topic and Role Discovery in Social Networks with Experiments on Enron and Academic Email. Journal of Artificial Intelligence Research 30, 249–272 (2007)Google Scholar
  16. 16.
    Mitchell, A., Bourn, D., Mawdsley, J., Wint, W., Clifton-Hadley, R., Gilbert, M.: Characteristics of cattle movements in Britain: An analysis of records from the Cattle Tracing System. Animal Science 80, 265–273 (2005)CrossRefGoogle Scholar
  17. 17.
    Robinson, S., Christley, R.M.: Identifying temporal variation in reported births, deaths and movements of cattle in Britain. BMC Veterinary Research, 2–11 (2006)Google Scholar
  18. 18.
    Streibel, O.: Trend Mining with Semantic-Based Learning. In: Proceedings of CAiSE-DC (2008)Google Scholar
  19. 19.
    Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: Self-Organizing Map in Matlab: the SOM Toolbox. In: Proceedings of the Matlab DSP Conference (200)Google Scholar
  20. 20.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (2006)Google Scholar
  21. 21.
    Defra. Livestock movements, identification and tracing: Cattle Tracing System, http://www.defra.gov.uk/foodfarm/farmanimal/movements/cattle/cts.htm
  22. 22.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Puteri N. E. Nohuddin
    • 1
  • Rob Christley
    • 2
  • Frans Coenen
    • 1
  • Christian Setzkorn
    • 2
  1. 1.Department of Computer ScienceUniversity of LiverpoolUK
  2. 2.School of Veterinary ScienceUniversity of Liverpool and National Centre for Zoonosis ResearchLeahurst, NestonUK

Personalised recommendations