Dynamic Pattern Extraction of Parameters in Laser Welding Process

  • Gissel Velarde
  • Christian Binroth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6171)


Tuning parameters is essential for the results of the welding process. In order to optimize the tuning process of welding parameters, we propose a system based on historical data of laser welding machines. On a given combination of materials, the system extracts patterns dynamically and classifies new cases with a relative accuracy, which depends on the selected data set. The analysis of the generated patterns helps decision makers to visualize important features in large databases and therefore, achieve optimal results.


Data mining patterns welding parameters rough sets automatic laser welding process coil joining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Binroth, C.: Lasersysteme für Contilinien in der Stahlindustrie. In: Sepold, G., Seefeld, T. (eds.) Strahltecknik Laserstrahlfügen: Prozesse, Systeme, Anwendungen, Trends, vol. 19, pp. 87–96. BIAS Verlag (2002)Google Scholar
  2. 2.
    Hugo Miebach GmbH,
  3. 3.
    Quality Control Data System,
  4. 4.
    Kim, I.S., Basu, A., Siores, E.: Mathematical models for control of weld bead penetration in the GMAW process. The International Journal of Advanced Manufacturing Technology 12(6), 393–401 (1996)CrossRefGoogle Scholar
  5. 5.
    Chang, W.S., Na, S.J.: Prediction of laser-spot-weld shape by numerical analysis and neural network. Journal Metallurgical and Materials Transactions B, 723–731 (2001)Google Scholar
  6. 6.
    Olabia, A.G., Casalinob, G., Benyounisa, K.Y., Hashmia, M.S.J.: An ANN and Taguchi algorithms integrated approach to the optimization of CO2 laser welding. In: Advances in Engineering Software, vol. 37, pp. 643–648. Elsevier, Amsterdam (2006)Google Scholar
  7. 7.
    Pawlak, Z.: Rough Sets. In: Theoretical Aspects of Reasoning About Data, Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  8. 8.
    Cios, K., Pedrycz, W., Swiniarski, R., Kurgan, L.: Data mining: A knowledge discovery approach. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  9. 9.
    Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: A tutorial. In: Pal, S., Skowron, A. (eds.) Rough Fuzzy Hybridization: A New Trend in Decision-Making, pp. 3–98. Springer, Singapore (1999)Google Scholar
  10. 10.
    Vinterbo, S., Øhrn, A.: Minimal approximate hitting sets and rule templates. In: Predictive Models in Medicine: Some Methods for Construccion and Adaptation. Department of Computer and information Sciences, NTU report 1999,130 (1999)Google Scholar
  11. 11.
    Swiniarski, R.: Rough Sets Methods in Feature Reduction and Classification. Int. J. Appl. Math. Comput. Sci. 11(3), 565–582 (2001)MathSciNetGoogle Scholar
  12. 12.
    Perner, P.: Prototype-based classification. Applied Intelligence 28(3), 238–246 (2008)CrossRefGoogle Scholar
  13. 13.
    Lee, M., Park, C.H.: On applying Dimension Reduction for Multi-labeled Problems. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 131–143. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Oracle Database SQL Reference 10g Release 2 (10.2). Oracle (2005) Google Scholar
  15. 15.
    Moore, S., Belden, E.: Oracle Database PL/SQL Language Reference, 11g Release 1 (11.1) B28370-05. Oracle (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gissel Velarde
    • 1
  • Christian Binroth
    • 1
  1. 1.Welding Machines DivisionHugo Miebach GmbHDortmundGermany

Personalised recommendations