Advertisement

Moving Targets

When Data Classes Depend on Subjective Judgement, or They Are Crafted by an Adversary to Mislead Pattern Analysis Algorithms - The Cases of Content Based Image Retrieval and Adversarial Classification
  • Giorgio Giacinto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6171)

Abstract

The vast majority of pattern recognition applications assume that data can be subdivided into a number of data classes on the basis of the values of a set of suitable features. Supervised techniques assume the data classes are given in advance, and the goal is to find the most suitable set of feature and classification algorithm that allows the effective partition of the data. On the other hand, unsupervised techniques allow discovering the “natural” data classes in which data can be partitioned, for a given set of features.These approaches are showing their limitation to handle the challenges issued by applications where, for each instance of the problem, patterns can be assigned to different data classes, and the definition itself of data classes is not uniquely fixed. As a consequence, the set of features providing for an effective discrimination of patterns, and the related discrimination rule, should be set for each instance of the classification problem. Two applications from different domains share similar characteristics: Content-Based Multimedia Retrieval and Adversarial Classification. The retrieval of multimedia data by content is biased by the high subjectivity of the concept of similarity. On the other hand, in an adversarial environment, the adversary carefully craft new patterns so that they are assigned to the incorrect data class. In this paper, the issues of the two application scenarios will be discussed, and some effective solutions and future reearch directions will be outlined.

Keywords

Intrusion Detection Multimedia Content Relevance Feedback Computer Security Data Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barreno, M., Nelson, B., Sears, R., Joseph, A.D., Tygar, J.D.: Can machine learning be secure? In: ASIACCS 2006: Proceedings of the 2006 ACM Symposium on Information, computer and communications security, pp. 16–25. ACM, New York (2006)CrossRefGoogle Scholar
  2. 2.
    Bayer, U., Comparetti, P., Hlauschek, C., Krügel, C., Kirda, E.: Scalable, behavior-based malware clustering. In: 16th Annual Network and Distributed System Security Symposium, NDSS 2009 (2009)Google Scholar
  3. 3.
    Bertini, M., Del Bimbo, A., Serra, G., Torniai, C., Cucchiara, R., Grana, C., Vezzani, R.: Dynamic pictorially enriched ontologies for digital video libraries. IEEE Multimedia 16(2), 42–51 (2009)CrossRefGoogle Scholar
  4. 4.
    Biggio, B., Fumera, G., Roli, F.: Adversarial pattern classification using multiple classifiers and randomisation (2008)Google Scholar
  5. 5.
    Biggio, B., Fumera, G., Roli, F.: Multiple classifier systems for adversarial classification tasks. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 132–141. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Kruegel, C., Kirda, E., Zhou, X., Wang, X., Kolbitsch, C., Comparetti, P.: Effective and efficient malware detection at the end host. In: USENIX 2009 - Security Symposium (2009)Google Scholar
  7. 7.
    Chatzichristofis, S.A., Boutalis, Y.S.: Cedd: Color and edge directivity descriptor: A compact descriptor for image indexing and retrieval. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 312–322. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Corona, I., Ariu, D., Giacinto, G.: Hmm-web: A framework for the detection of attacks against web applications. In: IEEE International Conference on Communications, ICC 2009, June 2009, pp. 1–6 (2009)Google Scholar
  9. 9.
    Corona, I., Giacinto, G., Mazzariello, C., Roli, F., Sansone, C.: Information fusion for computer security: State of the art and open issues. Inf. Fusion 10(4), 274–284 (2009)CrossRefGoogle Scholar
  10. 10.
    Cretu, G.F., Stavrou, A., Locasto, M.E., Stolfo, S.J., Keromytis, A.D.: Casting out demons: Sanitizing training data for anomaly sensors. In: IEEE Symposium on Security and Privacy, SP 2008, May 2008, pp. 81–95 (2008)Google Scholar
  11. 11.
    Dalvi, N., Domingos, P., Mausam, Sanghai, S., Verma, D.: Adversarial classification. In: KDD 2004: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 99–108. ACM, New York (2004)CrossRefGoogle Scholar
  12. 12.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Comput. Surv. 40(2), 1–60 (2008)CrossRefGoogle Scholar
  13. 13.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, Hoboken (2000)Google Scholar
  14. 14.
    Harries, M.B., Sammut, C., Horn, K.: Extracting hidden context. Mach. Learn. 32(2), 101–126 (1998)zbMATHCrossRefGoogle Scholar
  15. 15.
    Kompatsiaris, Y., Hobson, P. (eds.): Semantic Multimedia and Ontologies - Theory and Applications. Springer, Heidelberg (2008)Google Scholar
  16. 16.
    Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)CrossRefGoogle Scholar
  17. 17.
    Joshi, A., Undercoffer, J., Pinkston, J.: Modeling computer attacks: An ontology for intrusion detection. In: Hartmanis, J., Goos, G., van Leeuwen, J. (eds.) RAID 2003. LNCS, vol. 2820, pp. 113–135. Springer, Heidelberg (2003)Google Scholar
  18. 18.
    Kruegel, C., Vigna, G., Robertson, W.: A multi-model approach to the detection of web-based attacks. Comput. Netw. 48(5), 717–738 (2005)CrossRefGoogle Scholar
  19. 19.
    Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information retrieval: State of the art and challenges. ACM Trans. Multimedia Comput. Commun. Appl. 2(1), 1–19 (2006)CrossRefGoogle Scholar
  20. 20.
    Li, X., Snoek, C.G.M., Worring, M.: Learning social tag relevance by neighbor voting. IEEE Transactions on Multimedia 11(7), 1310–1322 (2009)CrossRefGoogle Scholar
  21. 21.
    Maggi, F., Robertson, W., Kruegel, C., Vigna, G.: Protecting a moving target: Addressing web application concept drift. In: RAID 2009: Proceedings of the 12th International Symposium on Recent Advances in Intrusion Detection, pp. 21–40. Springer, Heidelberg (2009)Google Scholar
  22. 22.
    Nguyen, G.P., Worring, M.: Interactive access to large image collections using similarity-based visualization. J. Vis. Lang. Comput. 19(2), 203–224 (2008)CrossRefGoogle Scholar
  23. 23.
    Pavlidis, T.: Limitations of content-based image retrieval (October 2008)Google Scholar
  24. 24.
    Perdisci, R., Dagon, D., Lee, W., Fogla, P., Sharif, M.: Misleading worm signature generators using deliberate noise injection. In: 2006 IEEE Symposium on Security and Privacy, May, pp. 15–31 (2006)Google Scholar
  25. 25.
    Perdisci, R., Ariu, D., Fogla, P., Giacinto, G., Lee, W.: Mcpad: A multiple classifier system for accurate payload-based anomaly detection. Comput. Netw. 53(6), 864–881 (2009)zbMATHCrossRefGoogle Scholar
  26. 26.
    Piras, L., Giacinto, G.: Neighborhood-based feature weighting for relevance feedback in content-based retrieval. In: 10th Workshop on Image Analysis for Multimedia Interactive Services, WIAMIS 2009, May 2009, pp. 238–241 (2009)Google Scholar
  27. 27.
    Richter, F., Romberg, S., Hörster, E., Lienhart, R.: Multimodal ranking for image search on community databases. In: MIR 2010: Proceedings of the international conference on Multimedia information retrieval, pp. 63–72. ACM, New York (2010)CrossRefGoogle Scholar
  28. 28.
    Sivic, J., Zisserman, A.: Efficient visual search for objects in videos. Proceedings of the IEEE 96(4), 548–566 (2008)CrossRefGoogle Scholar
  29. 29.
    Skillicorn, D.B.: Adversarial knowledge discovery. IEEE Intelligent Systems 24(6), 54–61 (2009)CrossRefGoogle Scholar
  30. 30.
    Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  31. 31.
    Stavrou, A., Cretu-Ciocarlie, G.F., Locasto, M.E., Stolfo, S.J.: Keep your friends close: the necessity for updating an anomaly sensor with legitimate environment changes. In: AISec 2009: Proceedings of the 2nd ACM workshop on Security and artificial intelligence, pp. 39–46. ACM, New York (2009)CrossRefGoogle Scholar
  32. 32.
    IBM Internet Security Systems. X-force® 2008 trend and risk report. Technical report, IBM (2009)Google Scholar
  33. 33.
    Thomee, B., Huiskes, M.J., Bakker, E., Lew, M.S.: Visual information retrieval using synthesized imagery. In: CIVR 2007: Proceedings of the 6th ACM international conference on Image and video retrieval, pp. 127–130. ACM, New York (2007)Google Scholar
  34. 34.
    Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Giorgio Giacinto
    • 1
  1. 1.Dip. Ing. Elettrica ed ElettronicaUniversità di CagliariItaly

Personalised recommendations