Advertisement

Anacardiaceae

  • S. K. PellEmail author
  • J. D. Mitchell
  • A. J. Miller
  • T. A. Lobova
Chapter
Part of the The Families and Genera of Vascular Plants book series (FAMILIES GENERA, volume 10)

Abstract

Trees, shrubs, rarely subshrubs, lianas, frequently with contact dermatitis-causing exudate; vertical resin canals present in bark and in phloem of petioles and large veins of leaves, also widely present in fruits, flowers, and other tissues. Leaves alternate, rarely opposite or whorled, simple or pinnately compound, very rarely palmate or bipinnately compound, sessile or petiolate; leaflets opposite, subopposite, or alternate, entire, serrate, dentate, or crenate; stipules absent. Inflorescences terminal and/or axillary, thyrsoid, paniculate, racemose, or spicate, rarely cauliflorous, rarely flowers solitary; bracts and prophylls caducous or persistent.

Keywords

Female Flower Male Flower Glandular Trichome Secondary Vein Resin Canal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Selected Bibliography

  1. Aguilar-Ortigoza, C.J., Sosa, V. 2004a. Taxonomic revision of the genus Pseudosmodingium (Anacardiaceae). Rhodora 106(928): 348–359.Google Scholar
  2. Aguilar-Ortigoza, C.J. Sosa, V. 2004b. The evolution of toxic phenolic compounds in a group of Anacardiaceae genera. Taxon 53: 357–364.CrossRefGoogle Scholar
  3. Aleksandrovski, E.S, Naumova, T.N. 1985. Family Anacardiaceae. In: Yakovlev, M.S. (ed.) Comparative embryology of flowering plants. Brunelliaceae – Tremandraceae (in Russian). Leningrad: Nauka, pp. 166–173.Google Scholar
  4. Altrichter, M., Sáenz, J., Carrillo, E. 1999. Chanchos cariblancos (Tayassu pecari) como depredadores y dispersores de semillas en el Parque Nacional Corcovado, Costa Rica. Brenesia 52: 53–59.Google Scholar
  5. Angiosperm Phylogeny Group (APG). 1998. An ordinal classification for the families of flowering plants. Ann. Missouri Bot. Gard. 85: 531–553.Google Scholar
  6. Angiosperm Phylogeny Group APG II. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141: 399–436.Google Scholar
  7. Angiosperm Phylogeny Group APG III. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161: 105–121.Google Scholar
  8. Anzótegui, L.M. 1971. El pollen de las Anacardiaceae del N.E. de la Argentina. Ameghiniana 8: 329–340.Google Scholar
  9. Arrillaga-Maffei, B.R., Ziliani, G., Ren, J. 1973. Anacardiáceas de Uruguay, Bol. 126. Montevideo: Universidad de la Republica.Google Scholar
  10. Baas, P., Wheeler, E., Chase, M. 2000. Dicotyledonous wood anatomy and the APG systems of angiosperm classification. Bot. J. Linn. Soc. 134: 3–17.Google Scholar
  11. Bachelier, J.B., Endress, P.K. 2007. Development of inflorescences, cupules, and flowers in Amphipterygium, and comparison with Pistacia (Anacardiaceae). Int. J. Plant Sci. 168: 1237–1253.CrossRefGoogle Scholar
  12. Backer, H.J., Haack, N.H. 1938. Le principe toxique des fruits de Renghas (Semecarpus heterophylla Bl.). Recueil Travaux Chimiques Pays-Bas 57: 225–232.CrossRefGoogle Scholar
  13. Baksi, S.K. 1976. Pollen morphology of the genera Gluta Linnaeus and Melanorrhoea Wallich (Anacardiaceae). In: Ferguson, I.K., Muller, J. (eds.) The evolutionary significance of the exine. London: Academic Press, pp. 379–395.Google Scholar
  14. Barfod, A. 1988. Inflorescence morphology of some South American Anacardiaceae and the possible phylogenetic trends. Nord. J. Bot. 8: 3–11.CrossRefGoogle Scholar
  15. Barkley, F.A. 1942. A key to the genera of Anacardiaceae. Am. Midl. Nat. 28(2): 465–474.CrossRefGoogle Scholar
  16. Behl, P.N., Captain, R.M. 1979. Skin-irritating and sensitizing plants found in India. Ram Nagar, New Delhi: S. Chand & Co.Google Scholar
  17. Behrens, R. 1996. Cashew as an agroforestry crop: prospects and potentials. Margraf: Weikersheim.Google Scholar
  18. Berry, E.W. 1924. An Oligocene cashew nut from South America. Am. J. Sci. 8: 126–126.CrossRefGoogle Scholar
  19. Berry, E.W. 1929. An Anacardium from the Eocene of Texas. J. Wash. Acad. Sci. 19: 37–39.Google Scholar
  20. Bhatt, J.R., Ram, H.Y.M. 1992. Development and ultrastructure of primary secretory ducts in the stem of Semecarpus anacardium (Anacardiaceae). IAWA Bull. n.s. 13(2): 173–185.Google Scholar
  21. Biondi, E. 1981. Arganioxylon sardum N. Gen., N. Sp. et Sclerocaryoxylon chiarugii N. Gen., N. Sp,: Bois fossiles du Miocène de la Sardaigne (Italie). Rev. Palaeob. Paly. 34: 301–320.CrossRefGoogle Scholar
  22. Birkinshaw, C. 2001. Fruit characteristics of species dispersed by the Black Lemur (Eulemur macaco) in the Lokobe forest, Madagascar. Biotropica 33: 478–486.Google Scholar
  23. Boesewinkel, F.D., Bouman, F. 1984. The seed: structure. In: Johri, B.M. (ed.) Embryology of angiosperms. New York: Springer.Google Scholar
  24. Bonnefille, R., Letouzey, R. 1976. Fruits fossiles d’Antrocaryon dans la vallée de l’Omo (Ethiopie). Adansonia II, 16: 65–82.Google Scholar
  25. Bremer, K., Bremer, B., Thulin, M. 1999. Introduction to phylogeny and systematics of flowering plants, 5th ed. Uppsala: Uppsala University.Google Scholar
  26. Burkill, H.M. 1985. Useful plants of West Tropical Africa. Vol. 1: Families A–D. Kew, London: Royal Botanic Gardens.Google Scholar
  27. Burnham, R.J., Carranco, N.L. 2004. Miocene winged fruits of Loxopterygium (Anacardiaceae) from the Ecuadorian Andes. Am. J. Bot. 91: 1767–1773.CrossRefGoogle Scholar
  28. Carmello-Guerreiro, S.M., Paoli, A.A.S. 1999. Morfologia e desenvolvimento pós-seminal de Schinus terebinthifolius Raddi, Lithraea molleoides (Vell.) Engl., Myracrodruon urundeuva Fr. Allem. Astronium graveolens Jacq. (Anacardiaceae). Naturalia, São Paulo 24: 127–138.Google Scholar
  29. Chase, M.W., Soltis, D.E., Olmstead, R.G., Morgan, D., Les, D.H., and 37 further authors 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. Gard. 80: 528–580.CrossRefGoogle Scholar
  30. Chen, T.K., Wiemer, D.F. 1984. A volatile leafcutter ant repellent from Astronium graveolens. Naturwissenschaften 71: 97–98.CrossRefGoogle Scholar
  31. Cojocaru, M., Droby, S., Glotter, E., Goldman, A., Gottlieb, H.E., Jacoby, B., Prusky, D. 1986. 5-(12-Heptadecenyl)-resorcinol, the major component of the antifungal activity in the peel of mango fruit. Phytochemistry 25: 1093–1095.CrossRefGoogle Scholar
  32. Collinson, M.E. 1983. Fossil plants of the London Clay. London: Palaeontology Association.Google Scholar
  33. Copeland, H.F. 1959. The reproductive structures of Schinus molle (Anacardiaceae). Madroño 15: 14–25.Google Scholar
  34. Copeland, H.F. 1961. Observations on the reproductive structures of Anacardium occidentale. Phytomorphology 11: 315–325.Google Scholar
  35. Corthout, J., Pieters, L.A., Claeys, M., Vanden Berghe, D.A., Vlietinck, A.J. 1991. Antiviral ellagitannins from Spondias mombin. Phytochemistry 30: 1129–1130.CrossRefGoogle Scholar
  36. Corthout, J., Pieters, L.A., Claeys, M., Vanden Berghe, D.A., Vlietinck, A.J. 1992. Antiviral caffeoyl esters from Spondias mombin. Phytochemistry 31: 1979–1981.CrossRefGoogle Scholar
  37. Corthout, J., Pieters, L.A., Claeys, M., Geerts, S., Vanden Berghe, D., Vlietninck, A.J. 1994. Antibacterial and molluscicidal phenolic acids from Spondias mombin. Planta Medica 60: 460–463.PubMedCrossRefGoogle Scholar
  38. Cronquist, A. 1981. An integrated system of classification of flowering plants. New York: Colombia University Press.Google Scholar
  39. Dadswell, H.E., Ingle, H.D. 1948. The anatomy of timbers of the southwest Pacific area: I. Anacardiaceae. Aust. J. Sci. Res., ser. B1 4: 391–415.Google Scholar
  40. Den Outer, R.W., Van Veenendaal, W.L.H. 1986. Distribution and development of secretory ducts in Trichoscypha (Anacardiaceae). Acta Bot. Neerl. 35: 425–435.Google Scholar
  41. de Vogel, E.F. 1980. Seedlings of dicotyledons. Wageningen: Ctr. Agr. Publ. Doc.Google Scholar
  42. Ding Hou. 1978. Anacardiaceae. Flora Malesiana I, 8(3): 395–548.Google Scholar
  43. Dobat, K., Peikert-Holle, T. 1985. Blüten und Fledermäuse. Frankfurt am Main: Waldemar Kramer.Google Scholar
  44. Drewes, S.E., Horn, M.M., Mabaso, N.J. 1998. Loxostylis alata and Smodingium argutum – a case of phytochemical bedfellows? S. Afr. J. Bot. 64: 128–129.Google Scholar
  45. Ellis, B., Daly, D.C., Hickey, L.J., Johnson, K.R., Mitchell, D.J., Wing, S.L. 2009. The Manual of Leaf Architecture. New York: Cornell University Press.Google Scholar
  46. Endress, P.K., Stumpf, S. 1991. The diversity of stamen structures in ‘lower’ Rosidae (Rosales, Fabales, Proteales, Sapindales). Bot. J. Linn. Soc. 107: 217–293.Google Scholar
  47. Engler, A. 1892. Anacardiaceae. In: Engler, A., Prantl, K. (eds.) Die natürlichen Pflanzenfamilien III, 5: 138–178. Leipzig: W. Engelmann.Google Scholar
  48. Epstein, W.L. 1994. Occupational poison ivy and oak dermatitis. Dermatol. Clin. 12(3): 511–516.PubMedGoogle Scholar
  49. Erdtman, G. 1952. Pollen morphology and plant taxonomy. Waltham, MA: Chronica Botanica Company.Google Scholar
  50. Fahn, A. 1979. Secretory tissues in plants. London: Academic Press.Google Scholar
  51. Fernandez, C., Fiandor, A., Martineez-Garate, A., Martinez Quesada, J. 1995. Allergy to pistachio: crossreactivity between pistachio nut and other Anacardiaceae. Clin. Exp. Allergy 25: 1254–1259.PubMedCrossRefGoogle Scholar
  52. Figueroa, X.M.C. 2001.La familia Julianiaceae en el estado de Jalisco, Mexico. Jalisco, Mexico: Universidad de Guadalajara.Google Scholar
  53. Forman, L.L. 1954. A new genus from Thailand. Kew Bull. 4: 555–564.Google Scholar
  54. Fragoso, J.M.V. 1997. Tapir-generated seed shadows: scale-dependent patchiness in the Amazon rain forest. J. Ecol. 85: 519–529.CrossRefGoogle Scholar
  55. Free, J.B., Williams, I.H. 1976. Insect pollination of Anacardium occidentale L., Mangifera indica L., Blighia sapida Koenig and Persea americana Mill. Trop. Agric. (Trinidad) 53(2): 125–139.Google Scholar
  56. Gadek, P.A., Fernando, E.S., Quinn, C.J., Hoot, S.B., Terrazas, T., Sheahan, M.C., Chase, M.W. 1996. Sapindales: molecular delimitation and infraordinal groups. Am. J. Bot. 83: 802–811.CrossRefGoogle Scholar
  57. Galvez, J., Zarzuelo, A., Crespo, M.E., Utrilla, M.P., Jimenez, J., Spiessens, C., de Witte, P. 1991. Antidiarrhoeic activity of Sclerocarya birrea bark extract and its active tannin constituent in rats. Phytoth. Res. 5: 276–278.CrossRefGoogle Scholar
  58. Galvez, J., Zarzuelo, A., Busson, R., Cobbaert, C., de Witte, P. 1992. (-)-Epicatechiin-3-galloyl ester: a secretagogue compound from the bark of Sclerocarya birrea. Planta Medica 58: 174–175.CrossRefGoogle Scholar
  59. Gambaro, V., Chamy, M.C., von Brand, E., Gambarino, J.A. 1986. 3-(pentadec-10-enyl)-catechol, a new allergenic compound from Lithraea caustica (Anacardiaceae). Planta Medica 44: 20–22.CrossRefGoogle Scholar
  60. Gardner, A.L. 1977. Feeding habits. In: Baker, R.J., Jones, J.K. Jr., Carter, D.C. (eds.) Biology of bats of the New World, Family Phyllostomidae. Part III. Special Publications. Lubbock, TX: The Museum, Texas Technical University Press.Google Scholar
  61. Gautier-Hion, A., Duplantier, J.-M., Quris, R., Feer, F., Sourd, C., Decoux, J.-P., Dubost, G., Emmons, L., Erard, C., Hecketsweiler, P., Moungazi, A., Roussilhon, C., Thiollay, J.-M. 1985. Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia 65: 324–337.CrossRefGoogle Scholar
  62. Geesink, A.J., Leeuwenberg, M., Ridsdale, C.E., Veldkamp, J.F. 1981. Thonner’s analytical key to the families of flowering plants. Leiden: University of Leiden Press.Google Scholar
  63. Gibson, A.C. 1981. Vegetative anatomy of Pachycormus (Anacardiaceae). Bot. J. Linn. Soc. 83: 273–284.CrossRefGoogle Scholar
  64. Gillis, W.T. 1971. The systematics and ecology of poison-ivy and poison-oaks. Rhodora 73: 72–159; 161–237; 370–443; 465–540.Google Scholar
  65. Gilman, E.F. 1999. Schinus terebinthifolius. University of Florida Cooperative Extension Service Fact Sheet FPS-542.Google Scholar
  66. Giménez, A.M., Moglia, G. 1995. Estructura cortical de Anacardiaceas Argentinas. Invest. Agr., Sist. Recur. For. 4(2): 189–203.Google Scholar
  67. Goldblatt, P., Johnson, D.E. (eds.). 1979-2008. Index to plant chromosome numbers. St. Louis, MO: Missouri Botanical Garden. http://mobot.mobot.org/W3T/Search/ipcn.html
  68. Goris, M.A. 1910. Contribution à l’étude des Anacardiacées de la tribu Mangiférées. Ann. Sci. Nat. (Bot.) IX, 11: 1–29.Google Scholar
  69. Gregory, M. 1994. Bibliography of systematic wood anatomy of dicotyledons. IAWA J. l, suppl. 1: 1–266.Google Scholar
  70. Gross, M., Baer, H., Fales, H.M. 1975. Urushiols of poisonous Anacardiaceae. Phytochemistry 14:2263–2266.CrossRefGoogle Scholar
  71. Grundwag, M., Fahn, A. 1969. The relation of embryology to the low seed set in Pistacia vera (Anacardiaceae). Phytomorphology 19: 225–235.Google Scholar
  72. Gundersen, A. 1950. Families of dicotyledons. Waltham, MA: Chronica Botanica Company.Google Scholar
  73. Halim, H., Locksley, H.D., Memon, J.J. 1980. Vesicant principles of poison ivy and related plants: synthesis of the urushiols, 1,2-dihydroxy-3-((Z)-pentadec-8-enyl)benzene and 1,2-dihydroxy-3-pentadecylbenzene. J. Chem. Soc., Perkin Trans. 1: 2331–2337.CrossRefGoogle Scholar
  74. Hall, J.B, O’Brien, E.M., Sinclair, F.L. 2002. Sclerocarya birrea: a monograph. Bangor: University of Wales.Google Scholar
  75. Hardin, J.W., Phillips, L.L. 1985. Atlas of foliar surface features in woody plants, VII. Rhus subg. Rhus (Anacardiaceae) of North America. Bull. Torrey Bot. Club 112(1): 1–10.CrossRefGoogle Scholar
  76. Heimsch, C.H. Jr. 1940. Wood anatomy and pollen morphology of Rhus and allied genera. J. Arnold Arb. 21: 279–291.Google Scholar
  77. Hess, W.R. 1949. Identification of New World timbers. Part II. Anacardiaceae. Trop. Woods 87: 11–34.Google Scholar
  78. Hill, A.W. 1933. The method of germination of seeds enclosed in a stony endocarp. Ann. Bot. 47: 873–887.Google Scholar
  79. Hill, A.W. 1937. The method of germination of seeds enclosed in a stony endocarp II. Ann. Bot. II, 1: 239–256.Google Scholar
  80. Hill, G.A., Mattacotti, V., Graham, W.D. 1934. The toxic principle of the poison ivy. J. Am. Chem. Soc. 56: 2736–2738.CrossRefGoogle Scholar
  81. Hsu, J. 1983. Late Cretaceous and Cenozoic vegetation in China, emphasizing their connections with North America. Ann. Missouri Bot. Gard. 70: 490–508.CrossRefGoogle Scholar
  82. Huang, T. 1972. Anacardiaceae. In: Pollen flora of Taiwan. Taipei: National Taiwan University, Botany Department Press.Google Scholar
  83. Ibe, R.A., Leis, R.A. 1979. Pollen morphology of Anacardiaceae of northeastern North America. Bull. Torrey Bot. Club 106: 140–144.CrossRefGoogle Scholar
  84. Jansen, A., de Raadt, J.L., van Toorenenbergen, A.W., van Wijk, R.G. 1992. Allergy to pistachio nuts. Allergy Proc. 13: 255–258.PubMedCrossRefGoogle Scholar
  85. Jiménez-Reyes, N., Cuevas Figueroa, X.M. 2001. Morfología del pollen de Amphipterygium Schiede ex Standley (Julianiaceae). Bol. IBUG 8(1/2): 65–73.Google Scholar
  86. Joel, D.M., Fahn, A. 1980. Ultrastructure of the resin ducts of Mangifera indica L. (Anacardiaceae). 1. Differentiation and senescence of the shoot ducts. Ann. Bot. 46: 225–233.Google Scholar
  87. Johnson, R., Baer, H., Kirkpatrick, C., Dawson, C., Khurana, R. 1972. Comparison of the contact allergenicity of the four pentadecylcatechols derived from poison ivy urushiol in humans. J. Allergy Clin. Immunol. 49: 27–35.PubMedCrossRefGoogle Scholar
  88. Johri, B.M. 1963. Female gametophyte. In: Maheshwari, P. (ed.) Recent advances in the embryology of angiosperms. Delhi: International Society of Plant Morphology.Google Scholar
  89. Juliano, J.B. 1937. Embryos of carabao mango, Mangifera indica L. Philipp. Agr. 25: 749–760.Google Scholar
  90. Kamilya, P., Paria, N. 1995. Seedling morphology in taxonomic study of some Indian members of the Anacardiaceae. J. Ind. Bot. Soc. 74: 193–196.Google Scholar
  91. Kelkar, S.S. 1958a. Embryology of Rhus mysurensis Heyne. J. Ind. Bot. Soc. 37: 114–122.Google Scholar
  92. Kelkar, S.S. 1958b. A contribution to the embryology of Lannea coromandelica (Houtt.) Merr. J. Univ. Bombay 26: 152–159.Google Scholar
  93. Kerr, G.A. 1935. Quebracho forests of South America. Commodities of Commerce Series, no. 9. Washington, D.C.Google Scholar
  94. Kostermans, A.J.G.H., Bompard, J.M. 1993. The mangoes: their botany, nomenclature, horticulture and utilization. Academic Press: London.Google Scholar
  95. Kryn, J.M. 1952. The anatomy of the wood of the Anacardiaceae and its bearing on the phylogeny and relationships of the family. Ann Arbor, MI: Ph.D. dissertation, University of Michigan.Google Scholar
  96. Kubo, I., Ochi, M., Vieira, P.C., Komatsu, S. 1993. Antitumor agents from the cashew (Anacardium occidentale) apple juice. J. Agric. Food Chem. 41:1012–1015.CrossRefGoogle Scholar
  97. Kullavanijaya, P., Ophaswongse, S. 1997. A study of dermatitis in the lacquerware industry. Contact Dermatitis 36: 244–246.PubMedCrossRefGoogle Scholar
  98. Leaf Architecture Working Group. 1999. Manual of leaf architecture – morphological description and categorization of dicotyledonous and net-veined monocotyledonous angiosperms. Washington, D.C.: Smithsonian Institution. http://www.peabody.yale.edu/collections/pb/MLA/
  99. Li, X., Baskin, J.M., Baskin, C.C. 1999. Contrasting dispersal phenologies in two fleshy-fruited congeneric shrubs, Rhus aromatica Ait. and Rhus glabra L. (Anacardiaceae). Can. J. Bot. 77: 976–988.CrossRefGoogle Scholar
  100. Loev, B. 1952. The active constituents of poison ivy and related plants. Structure and synthesis. Ph.D. dissertation, New York: Colombia University.Google Scholar
  101. Lopez-Naranjo, H.J. 1977. Hábito de crecimento y estructura de las yemas de Anacardium humile St. Hil. Anacardiaceae. Revista Forest. Venez. 27: 159–173.Google Scholar
  102. Maheshwari, P., Sachar, R.C, Chópra, R.N. 1955. Embryological studies in mango, Mangifera indica. Proc. 42nd Indian Sci. Congr., Dehli, 3: 233.Google Scholar
  103. Manchester, S.R. 1994. Fruits and seeds of the middle Eocene Nut Beds Flora, Clarno Formation, Oregon. Palaeontogr. Am. 58: 1–205.Google Scholar
  104. Manchester, S.R., Wilde, V., Collinson, M.E. 2007. Fossil cashew nuts from the Eocene of Europe: biogeographic links between Africa and South America. Int. J. Plant Sci. 168: 1199–1206.CrossRefGoogle Scholar
  105. Marticorena, C. 1968. Granas de pollen de plantas chilenas - Anacardiaceae. Gayana 17: 17–21.Google Scholar
  106. Martínez, E., Álvarez, C.H.R. 2007. Un nuevo género de Anacardiaceae de la Peninsula de Yucatán. Acta Bot. Hung. 49: 353–358.Google Scholar
  107. McWilliams, E. 1991. The impending naturalization of Pistacia chinensis (Anacardiaceae) in east Texas. Sida 14: 508–511.Google Scholar
  108. Metcalfe, C.R., Chalk, L. 1950. Anatomy of the dicotyledons, vol. 1. London: Oxford University Press.Google Scholar
  109. Meyer, H.W. 2003. The fossils of Florissant. Washington, D.C.: Smithsonian Books.Google Scholar
  110. Miller, A.J., Young, D.A., Wen, J. 2001. Phylogeny and biogeography of Rhus (Anacardiaceae) based on ITS sequences. Int. J. Plant Sci. 162: 1401–1407.CrossRefGoogle Scholar
  111. Mitani, M., Kuroda, S., Tutin, C.E.G. 1994. Floral lists from five study sites of apes in the African tropical forests. Tropics 3(3/4): 247–348.CrossRefGoogle Scholar
  112. Mitchell, J.D. 1990. The poisonous Anacardiaceae genera of the world. Adv. Econ. Bot. 8: 103–129.Google Scholar
  113. Mitchell, J.D. 2004. Anacardiaceae. In: Smith, N., Mori, S., Henderson, A.A., Stevenson, D.W., Heald, S.V. (eds.) Flowering plants of the Neotropics. Princeton, NJ: Princeton University Press.Google Scholar
  114. Mitchell, J.D., Mori, S.A. 1987. The cashew and its relatives (Anacardium: Anacardiaceae). Mem. N. Y. Bot. Gard. 42: 1–76.Google Scholar
  115. Mitchell, J.D., Daly, D., Pell, S.K., Randrianasolo, A. 2006. Poupartiopsis gen. nov. and its context in Anacardiaceae classification. Syst. Bot. 31: 337–348.CrossRefGoogle Scholar
  116. Moffett, R.O. 2007. Name changes in the Old World Rhus and recognition of Searsia (Anacardiaceae). Bothalia 37: 165–175.Google Scholar
  117. Morton, J.F. 1981. Atlas of medicinal plants of Middle America – Bahamas to Yucatan. Springfield, IL: Charles C. Thomas.Google Scholar
  118. Muller, J. 1984. Significance of fossil pollen for angiosperm history. Ann. Missouri Bot. Gard. 71: 419–443.CrossRefGoogle Scholar
  119. Muñoz, J.D.D. 1990. Flora del Paraguay. St. Louis, MO: Missouri Botanical Garden.Google Scholar
  120. Muroi, H., Kubo, I. 1993. Bacterial activity of anacardic acids against Streptococcus mutans and their potentiation. J. Agric. Food Chem. 41: 1780–1783.CrossRefGoogle Scholar
  121. Nair, G.M., Venkaiah, K., Shah, J.J. 1983. Ultrastructure of gum-resin ducts in cashew (Anacardium occidentale). Ann. Bot. 51: 297–305.Google Scholar
  122. Nair, G.V., Poti, A.N., Pillay, P.P. 1952a. The constituents of lacquer-bearing trees of Travancore-Cochin: Part I – chemical examination of the constituents of Holigarna arnottiana Hook. f. J. Sci. Indus. Res. IIB: 294–297.Google Scholar
  123. Nair, G.V., Poti, A.N., Pillay, P.P. 1952b. The constituents of lacquer-bearing trees of Travancore-Cochin: Part II – chemical examination of the latex of Semecarpus travancorica Bed. J. Sci. Indust. Res. IIB: 298–299.Google Scholar
  124. O’Dowd, D.J., Willson, M.F. 1991. Associations between mites and leaf domatia. TREE 6(6): 179–182.PubMedGoogle Scholar
  125. Olivera, L., Ludlow-Wiechers, B., Fonseca, R.M. 1998. Anacardiaceae. In: Ludlow-Wiechers, B., Hooghiemstra, H. (eds.) Flora Palinologica de Guerrero. No. 7. Mexico: Facultad de Ciencias, UNAM.Google Scholar
  126. Paula, J.E.D., Alves, J.L.D.H. 1973. Anatomia de Anacardium spruceanum Benth. ex Engl. (Anacardiaceae da Amazonia). Acta Amaz. 3: 39–53.Google Scholar
  127. Pell, S.K. 2004. Molecular systematics of the cashew family (Anacardiaceae). Ph.D. dissertation, Baton Rouge, LA: Louisiana State University.Google Scholar
  128. Pell, S.K., Mitchell, J.D., Lowry, P.P., Randrianasolo, A., Urbatsch, L.E. 2008. Phylogenetic split of Malagasy and African taxa of Protorhus and Rhus (Anacardiaceae) based on cpDNA trnL-trnF and nrDNA ETS and ITS sequence data. Syst. Bot. 33: 375–383.CrossRefGoogle Scholar
  129. Plisko, M.A. 1996. Family Anacardiaceae. In: Takhtajan, A.L. (ed.) Comparative seed anatomy. Vol. 5. Dicotyledons. Rosidae I (in Russian). St. Petersburg: Mir i semiya, pp. 445–469.Google Scholar
  130. Poulsen, J.R., Clark, C.J., Smith, T.B. 2001. Seed dispersal by a diurnal primate community in the Dja Reserve, Cameroon. J. Trop. Ecol. 17: 787–808.Google Scholar
  131. Prendergast, H.D.V., Jaeschke, H.F., Rumball, N. 2001. A lacquer legacy at Kew. Kew, London: Royal Botanic Gardens.Google Scholar
  132. Ramírez, J.L., Cevallos-Ferriz, S.R.S. 2002. A diverse assemblage of Anacardiaceae from Oligocene sediments, Tepexi de Rodriguez, Puebla, Mexico. Am. J. Bot. 89: 535–545.CrossRefGoogle Scholar
  133. Record, S.J. 1939. American woods of the family Anacardiaceae. Trop. Woods 60: 11–45.Google Scholar
  134. Reid, E.M. 1933. Note on some fossil fruits of Tertiary age from Colombia, South America. Rev. Geogr. Phys. 6: 209–216.Google Scholar
  135. Rivero-Cruz, J.F., Chávez, D., Hernández, B., Anaya, A.L., Mata, R. 1997. Separation and characterization of Metopium brownei urushiol components. Phytochemistry 45: 1003–1008.CrossRefGoogle Scholar
  136. Rodriguez, J., Howard, B., Robertson, K.R., Nevling, L.I. 2003. In Memoriam Richard Alden Howard, 1917–2003. In: Robertson, K.R. (ed.) ASPT Newslett. 17(2): 5–7.Google Scholar
  137. Ronse Decraene, L.P., Smets, E.F. 1995. The distribution and systematic relevance of the androecial character oligomery. Bot. J. Linn. Soc. 118: 193–247.CrossRefGoogle Scholar
  138. Roth, I. 1969. Estructura cortical de algunas especies venezolanas de Anacardiaceae. Acta Biol. Venez. 6: 146–160.Google Scholar
  139. Roth, I. 1981. Structural patterns of tropical barks. Encyclopedia of plant anatomy. Berlin: Borntraeger.Google Scholar
  140. Sachar, R.C., Chopra, R.N. 1957. A study of the endosperm and embryo in Mangifera L. Ind. J. Agric. Sci. 27: 219–228.Google Scholar
  141. Savolainen, V., Chase, M.W., Hoot, S.B., Morton, C.M., Soltis, D.E., Bayer, C., Fay, M.F., de Bruijn, A.Y., Sulllivan, S., Qiu, Y.-L. 2000a. Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL sequences. Syst. Biol. 49: 306–362.PubMedCrossRefGoogle Scholar
  142. Savolainen, V., Fay, M.F., Albach, D.C., Backlund, A., van der Bank, M., Cameron, K.M., Johnson, S.A., Lledó, M.D., Pintaud, J.-C., Powell, M., Sheahan, M.C., Soltis, D.E., Soltis, P.S., Weston, P., Whitten, W.M., Wurdack, K.J., Chase, M.W. 2000b. Phylogeny of the eudicots: a nearly complete familial analysis based on rbcL gene sequences. Kew Bull. 55: 257–309.CrossRefGoogle Scholar
  143. Saxena, G., McCutcheon, A.R., Farmer, S., Towers, G.H.N., Hancock, R.E.W. 1994. Antimicrobial constituents of Rhus glabra. J. Ethnopharmacol. 42: 95–99.PubMedCrossRefGoogle Scholar
  144. Silva, J.D.E. 1973. Catalogo de nervaçao foliar das Anacardiaceae da caatinga – I. Arq. Jard. Bot. Rio de Janeiro 14: 249–256.Google Scholar
  145. Stahl, E., Keller, K., Blinn, C. 1983. Cardanol, a skin irritant in pink pepper (Schinus terebinthifolius). Planta Medica 48: 5–9.CrossRefGoogle Scholar
  146. Suresh, M., Raj, R.K. 1990. Cardol: the antifilarial principle from Anacardium occidentale. Curr. Sci. 59: 477–479.Google Scholar
  147. Takhtajan, A. 1987. Systema Magnoliophytorum. Leningrad: Nauka.Google Scholar
  148. Taylor, D.W. 1990. Paleobiogeographic relationships of angiosperms from the Cretaceous and early tertiary of the North American area. Bot. Rev. 56: 279–417.CrossRefGoogle Scholar
  149. Terrazas, T. 1994. Wood anatomy of the Anacardiaceae: ecological and phylogenetic interpretation. Ph.D. dissertation, Chapel Hill, NC: University of North Carolina.Google Scholar
  150. Terrazas, T. 1995. Anatomia sistematica de la familia Anacardiaceae en Mexico. I. La corteza de Tapirira. Aublet. Bot. Soc. Bot. Mexico 57: 103–112.Google Scholar
  151. Thorne, R.F. 1992. Classification and geography of the flowering plants. Bot. Rev. 58: 225–348.CrossRefGoogle Scholar
  152. Tiffney, B.H., Fleagle, J.G, Bown, T.M. 1994. Early to Middle Miocene angiosperm fruits and seeds from Fejej, Ethiopia. Tertiary Res. 15: 25–42.Google Scholar
  153. Tyman, J.H., Morris, L.J. 1967. The composition of cashew nut-shell liquid (CNSL) and the detection of a novel phenolic ingredient. J. Chrom. 27: 287–288.CrossRefGoogle Scholar
  154. Vassilyev, A.E. 2000. Quantitative ultrastructure data of secretory duct epithelial cells in Rhus toxicodendeon. Int. J. Plant Sci. 161: 615–630.CrossRefGoogle Scholar
  155. Venkaiah, K. 1992. Development, ultrastructure and secretion of gum ducts in Lannea coromandelica (Houtt.) Merrill (Anacardiaceae). Ann. Bot. 69: 449–457.Google Scholar
  156. Venkaiah, K., Shah, J.J. 1984. Distribution, development and structure of gum ducts in Lannea coromandelica (Houtt.) Merril. Ann. Bot. 54: 175–186.Google Scholar
  157. Venning, F.D. 1948. The ontogeny of the laticiferous canals in the Anacardiaceae. Am. J. Bot. 35: 637–644.CrossRefGoogle Scholar
  158. Viana, G.S.B., Bandeira, M.A.M., Moura, L.C., Souza-Filho, M.V.P., Matos, F.J.A., Ribeiro, R.A. 1997. Analgesic and anti-inflammatory effects of the tannin fraction from Myracrodruon urundeuva Fr. All. Phytoth. Res. 11(2): 118–122.CrossRefGoogle Scholar
  159. Vogel, St. 1978. Evolutionary shifts from reward to deception in pollen flowers. In: Richards, A.J. (ed.) The pollination of flowers by insects. Linn. Soc. Symp. Ser. 6: 89–96. London: Academic Press.Google Scholar
  160. von Teichman, I. 1991. Ontogeny of the seed-coat of Rhus lancea L. fil., and pachychalazy in the Anacardiaceae. Bot. J. Linn. Soc. 107: 35–47.CrossRefGoogle Scholar
  161. von Teichman, I. 1998. Micromorphological structure of the fruit and seed of Smodingium argutum (Anacardiaceae), as an adaptation to its natural habitat. S. Afr. J. Bot. 64: 121–127.Google Scholar
  162. von Teichman, I., van Wyk, A.E. 1996. Taxonomic significance of pericarp and seed structure in Heeria argentea (Thunb.) Meisn. (Anacardiaceae), including reference to pachychalazy and recalcitrance. Bot. J. Linn. Soc. 122: 335–352.CrossRefGoogle Scholar
  163. Wang, B.C., Sork, V.L., Leong, M.T., Smith, T.B. 2007. Hunting of mammals reduces seed removal and dispersal of the Afrotropical tree Antrocaryon klaineanum (Anacardiaceae). Biotropica 39: 340–347.CrossRefGoogle Scholar
  164. Wannan, B.S. 1986. Systematics of the Anacardiaceae and its allies. Ph.D. dissertation, Sydney: University of New South Wales.Google Scholar
  165. Wannan, B.S., Quinn, C. 1990. Pericarp structure and generic affinities in the Anacardiaceae. Bot. J. Linn. Soc. 102: 225–252.CrossRefGoogle Scholar
  166. Wannan, B.S., Quinn, C. 1991. Floral structure and evolution in the Anacardiaceae. Bot. J. Linn. Soc. 107: 349–85.CrossRefGoogle Scholar
  167. Wannan, B.S., Quinn, C. 1992. Inflorescence structure and affinities of Laurophyllus (Anacardiaceae). Bot. J. Linn. Soc. 109: 235–245.CrossRefGoogle Scholar
  168. Wannan, B.S., Waterhouse, J.T., Gadek, P.A., Quinn, C.J. 1985. Biflavonyls and the affinities of Blepharocarya. Biochem. Syst. Ecol. 13: 105–108.CrossRefGoogle Scholar
  169. Wannan, B.S., Waterhouse, J.T., Quinn, C.J. 1987. A taxonomic reassessment of Blepharocarya F. Muell. Bot. J. Linn. Soc. 95: 61–72.CrossRefGoogle Scholar
  170. White, F. 1976. The underground forests of Africa: A preliminary review. Gard. Bull. Straits Settlem. 29: 57–71.Google Scholar
  171. Wilkinson, H.P. 1971. Leaf anatomy of various Anacardiaceae with special reference to the epidermis. Ph.D. thesis, London: University of London.Google Scholar
  172. Wilkinson, H.P. 1979. The plant surface (mainly leaf): Domatia. In: Metcalfe, C.R., Chalk, L. Anatomy of the dicotyledons. Oxford: Clarendon Press.Google Scholar
  173. Wilkinson, H.P. 1983. Leaf anatomy of Gluta (L.) Ding Hou (Anacardiaceae). Bot. J. Linn. Soc. 86: 375–403.CrossRefGoogle Scholar
  174. Yakovlev, M.S., Zhukova, G.Y. 1973. Angiosperms with green and colorless embryo. Leningrad: Nauka.Google Scholar
  175. Yi, T., Miller, A.J., Wen, J. 2004. Phylogenetic and biogeographic diversification of Rhus (Anacardiaceae) in the Northern Hemisphere. Mol. Phylogenet. Evol. 33: 861–879.PubMedCrossRefGoogle Scholar
  176. Yi, T., Miller, A.J., Wen, J. 2007. Phylogeny of Rhus (Anacardiaceae) based on sequences of nuclear Nia-i3 intron and chloroplast trnC-trnD. Syst. Bot. 32(2): 379–391.CrossRefGoogle Scholar
  177. Young, D.A. 1974. Comparative wood anatomy of Malosma and related genera (Anacardiaceae). Aliso 8: 133–146.Google Scholar
  178. Yunus, M., Yunus, D., Iqbal, M. 1990. Systematic bark morphology of some tropical trees. Bot. J. Linn. Soc. 103: 367–377.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • S. K. Pell
    • 1
    Email author
  • J. D. Mitchell
    • 2
  • A. J. Miller
    • 3
  • T. A. Lobova
    • 4
  1. 1.Brooklyn Botanic GardenBrooklynUSA
  2. 2.Institute of Systematic BotanyThe New York Botanical GardenBronxUSA
  3. 3.Biology DepartmentSaint Louis UniversitySt. LouisUSA
  4. 4.Department of Biological SciencesOld Dominion UniversityNorfolkUSA

Personalised recommendations