• S. SwensenEmail author
  • K. Kubitzki
Part of the The Families and Genera of Vascular Plants book series (FAMILIES GENERA, volume 10)


Dioecious tall soft-wooded, buttressed trees or (andro)dioecious robust perennial actinorhizal herbs; cork cambium initially superficial. Leaves spiral, petiolate, simple and heart-shaped or imparipinnate to pinnatifid, entire or dentate, estipulate. Inflorescences thyrsoid, long, pendant, terminal or terminal and axillary spikes or (males only) thyrses, or compound, contracted thyrses. Flowers subsessile or shortly petiolate; male ones: calyx tube very short or 0, with 3–10 lobes; petals 0 or (Octomeles) small and greenish; stamens 4–15(25); filaments very short or elongate; anthers basifixed, bilocular, dehiscing longitudinally; vestigial gynoecium sometimes present; female and bisexual flowers: ovary inferior, unilocular with 3–8 longitudinal parietal or protruding-diffuse placentae; carpels forming a roof over the ovary on the rim of which the calyx tube with the widely separated stylodia is inserted; calyx lobes 3–8, short; petals 0; stamens, if present, few; stylodia short and broad with a distinct stigma or elongate and bifid and stigmatic throughout; ovules in the single cavity 20–100, pendulous to horizontal, anatropous, bitegmic, crassinucellate. Fruit capsular, dehiscing either apically or laterally. Seeds very numerous, minute; endosperm scant or 0; embryo straight. x=11, 23.


Male Flower Solomon Island Calyx Lobe Calyx Tube Apical Pore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Selected Bibliography

  1. Airy Shaw, H.K. 1965. Diagnoses of new families, new names, etc., for the seventh edition of Willis's “Dictionary”. Kew Bull. 18: 249–273.CrossRefGoogle Scholar
  2. Axelrod, D.I. 1975. Evolution and biogeography of Madrean-Tethyan sclerophyll vegetation. Ann. Missouri Bot. Gard. 62: 280–334.CrossRefGoogle Scholar
  3. Boesewinkel, F.D. 1984. Ovule and seed structure in Datiscaceae. Acta Bot. Neerl. 32: 417–425.Google Scholar
  4. Bohm, B.A. 1988. Flavonoid systematics of the Datiscaceae. Biochem. Syst. Ecol. 16: 151–155.CrossRefGoogle Scholar
  5. Brummitt, R. 2007. Datiscaceae. In: Heywood, V.H., Brummitt, R.K., Culham, A., Seberg, O., Flowering plant families of the world. Buffalo, NY: Firefly.Google Scholar
  6. Chase, M.W., Soltis, D.E., Olmstead, R.G., Morgan, D., Les, D.H. and 37 further authors. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. Gard. 80: 528–580.CrossRefGoogle Scholar
  7. Davidson, C. 1973. An anatomical and morphological study of Datiscaceae. Aliso 8: 49–110.Google Scholar
  8. Davidson, C. 1976. Anatomy of xylem and phloem of Datiscaceae. Nat. Hist. Mus. Los Angeles County, Contr. Sci. 280: 1–28.Google Scholar
  9. Fritsch, P., Rieseberg, L.H. 1992. High outcrossing rates maintain male and hermaphrodite individuals in populations of the flowering plant Datisca glomerata. Nature 359: 633–636.CrossRefGoogle Scholar
  10. Gilg, E. 1925. Datiscaceae. In: Engler, A., Prantl., K., Die natürl. Pflanzenfam, 2nd edn, vol. 21. Leipzig: Engelmann, pp. 543–547.Google Scholar
  11. Goodall-Copestake, W.P., Harris, D.J., Hollingsworth, P.M. 2009. The origin of a mega-diverse genus: dating Begonia (Begoniaceae) using alternative datasets, calibrations, and reloxed clock methods. Bot. J. Linn. Soc. 159: 363–380.CrossRefGoogle Scholar
  12. Hegnauer, R. 1989. Chemotaxonomie der Pflanzen. Vol. 8. Basel: Birkhaeuser.Google Scholar
  13. Himmelbaur, W. 1909. Eine blütenmorphologische und embryologische Studie über Datisca cannabina L. Sitzungsber. Kais. Akad. Wiss., Math.-Nat. Cl. II, Abt. 1, 118: 91–113.Google Scholar
  14. Lakhanpal, R.N., Verma, J.K. 1965. Fossil wood of Tetrameles from the Deccan Intertrappean beds of Mohgaonkalan, Madhya Pradesh. Paleobotanist 14: 209–213.Google Scholar
  15. Lindley, J. 1846. The vegetable kingdom, vol. 1. London: Bradbury & Evans.Google Scholar
  16. Liston, A., Rieseberg, L.H., Elias, T.S. 1989. Morphological stasis and molecular divergence in the intercontinental disjunct genus Datisca (Datiscaeae). Aliso 12: 525–542.Google Scholar
  17. Matthews, M.L., Endress, P.K. 2004. Comparative floral structure and systematics in Cucurbitales (Corynocarpaceae, Coriariaceae, Tetramelaceae, Datiscaceae, Begoniaceae, Cucurbitaceae, Anisophylleaceae). Bot. J. Linn. Soc. 145: 129–185.CrossRefGoogle Scholar
  18. Rieseberg, L.H., Philbrick, C.T., Pack, P.E., Hanson, M.A., Fritsch, P. 1993. Inbreeding depression in androdioecious populations of Datisca glomerata (Datiscaceae). Am. J. Bot. 80: 757–762.CrossRefGoogle Scholar
  19. Steenis, C.G.G.J. van 1953. Datiscaceae. In: Flora Malesiana I, 4: 382–387.Google Scholar
  20. Swensen, S.M. 1996. The evolution of actinorhizal symbioses: evidence for multiple origins of the symbiotic association. Am. J. Bot. 83: 1503–1512.CrossRefGoogle Scholar
  21. Swensen, S.M., Mullin, B.C., Chase, M.W. 1994. Phylogenetic affinities of Datiscaceae based on an analysis of nucleotide sequences from the plastid rbcL gene. Syst. Bot. 19: 157–168.CrossRefGoogle Scholar
  22. Swensen, S.M., Luthi, J.N., Rieseberg, L.H. 1998. Datiscaceae revisited: monophyly and the sequence of breeding system evolution. Syst. Bot. 23: 157–169.CrossRefGoogle Scholar
  23. Takhtajan, A.L. (ed.) 1981. Flowering plants, vol. 5 (2). Moscow: Proswjeschtschenie.Google Scholar
  24. Wagstaff, S.J., Dawson, M.I. 2000. Classification, origin, and patterns of diversification of Corynocarpus (Corynocarpaceae) inferred from DNA sequences. Syst. Bot. 25: 134–149.CrossRefGoogle Scholar
  25. Warburg, O. 1895. Datiscaceae. In: Engler, A., Prantl, K., Die natürl. Pflanzenfam. III, 6a: 150–155. Leipzig: W. Engelmann.Google Scholar
  26. Wydler, H. 1878. Zur Morphologie, hauptsächlich der dichotomen Blüthenstände. Jahrb. wiss. Bot. 11: 313–379.Google Scholar
  27. Zhang, Li-Bing, Simmons, M.P., Kocyan, A., Renner, S.S. 2006. Phylogeny of the Cucurbitales based on DNA sequences of nine loci from three genomes: implications for morphological and sexual systems evolution. Mol. Phylogen. Evol. 39: 305–322.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Biology, Ithaca CollegeIthacaUSA
  2. 2.Biozentrum Klein-FlottbekHamburgGermany

Personalised recommendations