Skip to main content

Abstract

Medicago truncatula, an important member of the legume family (Fabaceae) known for its ability to produce high protein-containing crops, typically has a symbiotic relationship with nitrogen fixing Rhizobia bacteria, can regenerate soil fertility, and synthesize a broad range of medically important phytochemicals. The Medicago genus has 83 species of mainly annual flowering plants including some perennial and even pluriannual plants that can be diploids, tetraploids, or hexaploides. Two best known members of this genus are Medicago sativa (common name alfalfa) and M. truncatula, the former for its agricultural significance and the latter as a completely sequenced model legume that can serve as a reference for all legumes.

In this chapter, we describe the phylogenetic relationship and evolution of Medicago genus, cytogenetic studies done for several species, highlight M. truncatula sequencing effort, compare its genome to other sequenced legume genomes, and emphasize the importance of M. truncatula on genetic analyses and improvement of cultivated legume crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy S, Griffiths-Jones S, Howe K, Marshall M, Sonnhammer E (2002) The Pfam protein family database. Nucleic Acids Res 30:546–550

    Google Scholar 

  • Bauchan GR, Hossain MA (1999) Constitutive heterochromatin DNA polymorphisms in diploid Medicago sativa ssp. falcate. Genome 42:930–935

    Article  PubMed  CAS  Google Scholar 

  • Bell K, Dixon R, Farmer A (2001) The Medicago genome initiative: a model legume database. Nucleic Acids Res 29(1):547–553

    Article  Google Scholar 

  • Bena G (2001) Molecular phylogeny supports the morphologically based taxonomic transfer of the “medicagoid” Trigonella species to the genus Medicago L. Plant Syst Evol 229:217–236

    Article  CAS  Google Scholar 

  • Bena G, Lyet A, Huguet T, Olivieri I (2005) Medicago-Sinorhizobium symbiotic specificity evolution and the geographic expansion of Medicago. J Evol Biol 18:1547–1558

    Article  PubMed  CAS  Google Scholar 

  • Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94

    Article  PubMed  CAS  Google Scholar 

  • Cannon SB, McCombie WR, Sato S, Tabata S, Denny R, Palmer L, Katari M, Young ND (2003) Evolution and microsynteny of the apyrase gene family in three legume genomes. Mol Genet Genomics 270:347–361

    Article  PubMed  CAS  Google Scholar 

  • Cannon S, Crow J, Heuer M, Wang X, Cannon E, Dwan C, Lamblin A, Vasdewani J, Mudge J, Cook A, Gish J, Cheung F, Kenton S, Kunau T, Brown D, May G, Kim D, Cook D, Roe B, Town C, Young N, Retzel E (2005) Databases and Information Integration for the Medicago truncatula Genome and Transcriptome. Plant Physiol 138:38–46

    Article  PubMed  CAS  Google Scholar 

  • Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun JH, Kalo P, Penmetsa RV, Seres A, Kulikova O, Roe BA, Bisseling T, Kiss GB, Cook DR (2004) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166(3):1463–1502

    Article  PubMed  CAS  Google Scholar 

  • Clark A (2007) Managing cover crops profitably, 3rd edn. SARE Outreach 2007, 244 p. http://hotfile.com/dl/38414892/e309ef2/Managing20Cover20Crops20Profitably.rar.html

  • Constabel CP (1999) A survey of herbivore-inducible defensive proteins and phytochemicals. In: Agrawal S, Tuzun S, Bent E (eds) Inducible plant defenses against pathogens and herbivores: biochemistry, ecology, and agriculture. The American Phytopathology Society Press, St. Paul, MN, pp 137–166

    Google Scholar 

  • Csuros M, Li B, Milosavljevic A (2003) Clone-Array Pooled Shotgun Mapping and Sequencing: Design and Analysis of Experiments. Genome Informatics 14:186–195

    PubMed  CAS  Google Scholar 

  • Dangl J (1998) Plants just say NO to pathogens. Nature 394:525–527

    Article  PubMed  CAS  Google Scholar 

  • Edwards O, Klingler J, Gao L, Korth K, Singh K (2006) Medicago truncatula interaction with insects. Medicago truncatula Handbook. Samuel Roberts Noble Foundation, Oklahoma, OK

    Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. Accuracy assessment. Genome Res 8:175–185

    Google Scholar 

  • Foissac S, Bardou P, Moisan A, Cros M, Schiex T (2003) EuGene’Hom: a generic similarity-based gene finder using multiple homologous sequences. Nucleic Acids Res 31:3742–3745

    Article  PubMed  CAS  Google Scholar 

  • Gillies CB (1968) The pachytene chromosomes of a diploid Medicago sativa. Can J Genet Cytol 10:788–793

    Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consed: A graphical tool for sequence finishing. Genome Research 8:195–202

    PubMed  CAS  Google Scholar 

  • Graham P, Vance C (2003) Legumes: importance and constraints to greater use. Plant Physiol 131(3):872–877

    Article  PubMed  CAS  Google Scholar 

  • Haas B, Delcher A, Mount S, Wortman J, Smith R, Hannick L, Maiti R, Ronning C, Rusch D, Town C, Salzberg S, White O (2003) Improving the Arabidodpsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res 31:5654–5666

    Article  PubMed  CAS  Google Scholar 

  • Haberer G, Young S, Bharti AK, Gundlach H, Raymond C, Fuks G, Butler E, Wing RA, Rounsley S, Birren B, Nusbaum C, Mayer KF, Messing J (2005) Structure and architecture of the maize genome. Plant Physiol 139:1612–1624

    Article  PubMed  CAS  Google Scholar 

  • Hofmann K, Bucher P, Falquet L, Bairoch A (1999) The PROSITE database, its status in 1999. Nucleic Acids Res 27:215–219

    Article  PubMed  CAS  Google Scholar 

  • Kalo P, Seres A, Taylor S, Jakab J, Kevei Z, Kereszt A, Entre G, Ellis T, Kiss G (2004) Comparative mapping between Medicago sativa and Pisum sativum. Mol Genet Genomics 272:235–246

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30

    Article  PubMed  CAS  Google Scholar 

  • Kulikova O, Gualtieri G, Geurts R, Kim DJ, Cook D, Huguet T, de Jong JH, Fransz PF, Bisseling T (2001) Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J 27(1):49–58

    Article  PubMed  CAS  Google Scholar 

  • Lesinš KA, Lesinš I (1979) Genus Medicago (Leguminosae), a taxogenetic study. Dr. W. Junk, Hague, pp 1–229. ISBN 9-06193-598-9

    Google Scholar 

  • Li L, Wang X, Stolc V, Li X, Zhang D, Su N, Tongprasit W, Li S, Cheng Z, Wang J, Deng X (2006) Genome-wide transcription analyses in rice using tiling microarrays. Nature Genetics 38:124 –129

    Google Scholar 

  • Lindström A, Odeberg J, Albert J (2004) Pyrosequencing for detection of Lamivudine-resistant hepatitis B virus. J Clin Microbiol 42:4788–4795

    Article  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  PubMed  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman W, Attiya S, Bader J, Bemben L, Berka J, Braverman M, Chen Y, Chen Z, Dewell S, Du L, Fierro J, Gomes X, Godwin B, He W, Helgesen S, Ho C, Irzyk G, Jando S, Alenquer M, Jarvie T, Jirage K, Kim J, Knight J, Lanza J, Leamon J, Lefkowitz S, Lei M, Li J, Lohman K, Lu H, Makhijani V, McDade K, McKenna M, Myers E, Nickerson E, Nobile J, Plant R, Puc B, Ronan M, Roth G, Sarkis G, Simons J, Simpson J, Srinivasan M, Tartaro K, Tomasz A, Vogt K, Volkmer G, Wang S, Wang Y, Weiner M, Yu P, Begley R, Rothberg J (2005) Genome sequencing in microfabricated highdensity picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  • McKhann H, Paiva N, Dixon R, Hirsch A (1998) Expression of genes for enzymes of the flavonoid biosynthetic pathway in the early stages of the Rhizobium legume symbiosis. Adv Exp Med Biol 439:45–54

    PubMed  CAS  Google Scholar 

  • Mishima M, Ohmido N, Fukui K, Yahara T (2002) Trends in site-number change of rDNA loci during polyploid evolution in Sanguisorba (Rosaceae). Chromosoma 110:550–558

    Article  PubMed  CAS  Google Scholar 

  • Mudge J, Cannon S, Kalo P, Oldroyd G, Roe B, Town C, Young N (2005) Highly syntenic regions in the genomes of soybean, Medicago truncatula and Arabidopsis thaliana. BMC Plant Biol 5:1–16

    Article  Google Scholar 

  • Mun J, Kim D-J, Choi H-K, Gish J, Debellé F, Mudge J, Denny R, Endré G, Saurat O, Dudez A-M, Kiss G, Roe B, Young N, Cook D (2006) Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps. Genetics 172:2541–2555

    Article  PubMed  CAS  Google Scholar 

  • Nam YW, Penmetsa RV, Endre G, Uribe P, Kim D (1999) Construction of a bacterial artificial chromosome library of Medicago truncatula and identification of clones containing ethylene-response gene. Theor Appl Genet 98:638–646

    Article  CAS  Google Scholar 

  • Prosperi JM, Guy P, Genier G, Angevain M (1995) Les luzernes ou le genre Medicago. In: Ressources génétiques des plantes fourragères et à gazon, INRA Editions, Paris, France, 131–140

    Google Scholar 

  • Roe B, Kupfer D (2004) Sequencing gene rich regions of Medicago truncatula, a model legume. In: Hopkins A, Yang ZY, Mian R, Sledge M, Barker RE (eds) Molecular breeding of forage and turf. Kluwer, Dordrecht, pp 333–344

    Chapter  Google Scholar 

  • Rosato M, Castro M, Rosselló J (2008) Relationships of the woody Medicago species (Section Dendrotelis) assessed by molecular cytogenetic analyses. Ann Bot 102(1):15–22

    Article  PubMed  Google Scholar 

  • Rosenblum BB, Lee LG, Spurgeon SL, Khan SH, Menchen SM, Heiner CR, Chen SM (1997) New dye-labeled terminators for improved DNA sequencing pattern. Nucleic Acids Res 25:4500–4504

    Article  PubMed  CAS  Google Scholar 

  • Schnurra J, Jungb H, Samaca D (2007) A comparative study of alfalfa and Medicago truncatula stem traits: morphology, chemical composition, and ruminal digestibility. Crop Sci 47:1672–1680

    Article  Google Scholar 

  • Sclep G, Allemeersch J, Liechti R, Meyer B, Beynon J, Bhalerao R, Moreau Y, Nietfeld W, Renou J, Reymond P, Kuiper M, Hilson P (2007) CATMA, a comprehensive genome-scale resource for silencing and transcript profiling of Arabidopsis genes. BMC Bioinformatics 8:400

    Article  PubMed  Google Scholar 

  • Skalicka K, Lim Y, Matyasek R, Koukalova B, Leitch A, Kovarik A (2005) Rapid evolution of parental rDNA in a synthetic tobacco allotetraploid line. Am J Bot 90:988–996

    Article  Google Scholar 

  • Solovyev V, Salamov A, Lawrence C (1995) Identification of human gene structure using linear discriminant functions and dymanic programming. ISMB 3:367–375

    PubMed  CAS  Google Scholar 

  • Tatusov R, Fedorova N, Jackson J, Jacobs A, Kiryutin B, Koonin E, Krylov D, Mazumder R, Mekhedov S, Nikolskaya A, Rao B, Smirnov S, Sverdlov A, Vasudevan S, Wolf Y, Yin J, Natale D (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41

    Article  PubMed  Google Scholar 

  • Thoquet P, Gherardi M, Journet EP, Kereszt A, Ane JM (2002) The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biol 2:1

    Article  PubMed  Google Scholar 

  • Valizadeh M, Kang K, Kanno A, Kameya T (1996) Analysis of genetic distance among none Medicago species by using DNA polymorphism. Breed Sci 46:7–10

    CAS  Google Scholar 

  • Woo H, Jeong BR, Hawes M (2005) Flavonoids: from cell cycle regulation to biotechnology. Biotechnol Lett 27:365–374

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Chu H, Wang H, Li J, Sang T (2009) Population genetic structure of two Medicago species shaped by distinct life form, mating system and seed dispersal. Ann Bot 103:825–834

    Article  PubMed  CAS  Google Scholar 

  • Young N, Mudge J, Elli N (2003) Legume genomes: more than peas in a pod. Curr Opin Plant Biol 6:199–204

    Article  PubMed  CAS  Google Scholar 

  • Young N, Cannon S, Sato S, Kim D, Cook D, Towm C, Roe B, Tabata S (2005) Sequencing the gene spaces of Medicago truncatula and Lotus japonicus. Plant Physiol 137:1174–1181

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Roe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sanders, I., Sukharnikov, L., Najar, F.Z., Roe, B.A. (2011). Medicago. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14387-8_10

Download citation

Publish with us

Policies and ethics