Skip to main content

Monopoles, Calorons, and Dual Superconductivity

  • Chapter
  • First Online:
An Introduction to the Confinement Problem

Part of the book series: Lecture Notes in Physics ((LNP,volume 821))

  • 2357 Accesses

Abstract

In a type II superconductor, magnetic fields are collimated into flux tubes known as Abrikosov vortices. If stable magnetic monopoles existed, and could be pair produced within a type II superconductor, then a magnetic flux tube would run between widely separated monopoles and antimonopoles, and the static monopole potential would rise linearly with monopole separation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a review of magnetic monopole solutions in abelian and non-abelian gauge theories, cf. Coleman [1].

  2. 2.

    A factor of electric charge g has been absorbed into the definition of A μ.

  3. 3.

    A rigorous proof of confinement in compact QED3 was later published in [11].

  4. 4.

    The monopole currents actually live on the links of the dual lattice (cf. Chap. 6) in four dimensions.

References

  1. Coleman, S.: The magnetic monopole fifty years later. In: Zichichi, A. (ed.) The Unity of the Fundamental Interactions. Kluwer Academic Publishers, Dordrecht (1983)

    Google Scholar 

  2. ‘t Hooft, G.: High energy physics. In: Zichichi A (ed.) Gauge theories with unified weak, electromagnetic, and strong interactions. EPS International Conference, Palermo (1975)

    Google Scholar 

  3. Mandelstam S.: Vortices and quark confinement in non-abelian gauge theories. Phys. Reports 23C, 245–249 (1976)

    Article  ADS  Google Scholar 

  4. Polyakov, A.: Gauge Fields and Strings. Harwood Academic Publishers, Chur (1987)

    Google Scholar 

  5. DeGrand, T., Toussaint, D.: Topological excitations and Monte Carlo simulation of Abelian gauge theory. Phys. Rev. D 22, 2478–2489 (1980)

    Article  ADS  Google Scholar 

  6. Polyakov, A.: Compact gauge fields and the infrared catastrophe. Phys. Lett. B 59, 82–84 (1975)

    Google Scholar 

  7. Polyakov A.: Quark confinement and topology of gauge groups. Nucl. Phys. B 120, 429–458 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  8. Banks, T., Myerson, R., Kogut, J.B.: Phase transitions in Abelian lattice gauge theories. Nucl. Phys. B 129, 493–510 (1977)

    Article  ADS  Google Scholar 

  9. Ambjørn, J., Greensite, J.: Center disorder in the 3D Georgi–Glashow model. JHEP 05, 1–23 (1998) [arXiv: hep-lat/9804022]

    Google Scholar 

  10. Watson, G.N.: Three triple integrals. Quart. J. Math. 10, 266–276 (1939)

    Article  Google Scholar 

  11. Gopfert, M., Mack, G.: Proof of confinement of static quarks in 3-dimensional U(1) lattice gauge theory for all values of the coupling constant. Commun. Math. Phys. 82, 545–606 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  12. ‘t Hooft, G.: Magnetic monopoles in unified gauge theories. Nucl. Phys. B 79, 276–284 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  13. Polyakov, A.M.: Particle spectrum in the quantum field theory. JETP Lett. 20, 194–195 (1974)

    ADS  Google Scholar 

  14. Bornyakov, V.G., Ilgenfritz E.M., Mitrjushkin V.K., Zadorozhnyi, A.M., Muller-Preussker, M.: Investigation of the vacuum structure of the Georgi-Glashow model on the lattice. Z. Phys. C 42, 633–640 (1989)

    Google Scholar 

  15. Schierholz, G., Seixas, J., Teper, M.: Patterns of symmetry restoration in gauge-scalar theories: A Monte Carlo simulation of the SO(3) Georgi–Glashow model. Phys. Lett. B 157, 209–215 (1985)

    Google Scholar 

  16. Brower, R.C., Kessler, D.A., Schalk, T., Levine, H., Nauenberg, M.: The SU(2) adjoint Higgs model. Phys. Rev. D 25, 3319–3324 (1982)

    Google Scholar 

  17. Shifman, M., Ünsal, M.: QCD-like theories on R(3) × S(1): A smooth journey from small to large r(S(1)) with double-trace deformations. Phys. Rev. D 78, 065004-1–065004-20 (2008) [arXiv:0802.1232 [hep-th]].

    Google Scholar 

  18. Ünsal, M.: Magnetic bion condensation: A new mechanism of confinement and mass gap in four dimensions. Phys. Rev. D80, 065001-1–065001-21 (2009) [arXiv:0709.3269 [hep-th]]

    Google Scholar 

  19. Nielsen, H.B., Olesen, P.: Vortex line models for dual strings. Nucl. Phys. B 61, 45–61 (1973)

    Article  ADS  Google Scholar 

  20. Seiberg, N., Witten, E.: Electric–magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang–Mills theory. Nucl. Phys. B 426, 19–52 (1994) [Erratum-ibid. B 430, 485 (1994)] [arXiv:hep-th/9407087]

    Google Scholar 

  21. Seiberg, N., Witten, E.: Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD. Nucl. Phys. B 431, 484–550 (1994) [arXiv:hep-th/9408099]

    Google Scholar 

  22. Bilal, A.: Duality in N = 2 SUSY SU(2) Yang–Mills theory: A pedagogical introduction to the work of Seiberg and Witten. arXiv:hep-th/9601007

    Google Scholar 

  23. Alvarez-Gaume, L., Hassan, S.F.: Introduction to S-duality in N = 2 supersymmetric gauge theories (A pedagogical review of the work of Seiberg and Witten). Fortsch. Phys. 45, 159–236 (1997) [arXiv:hep-th/9701069]

    Google Scholar 

  24. Lerche, W.: Introduction to Seiberg-Witten theory and its stringy origin. Nucl. Phys. Proc. Suppl. 55B, 83–117 (1997) [Fortsch. Phys. 45, 293 (1997)] [arXiv:hep-th/9611190]

    Google Scholar 

  25. Douglas, M.R., Shenker, S.H.: Dynamics of SU(N) supersymmetric gauge theory. Nucl. Phys. B 447, 271–296 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Shifman, M., Yung, A.: Supersymmetric solitons and how they help us understand non-abelian gauge theories. Rev. Mod. Phys. 79, 1139–1196 (2007) [arXiv:hep-th/0703267]

    Google Scholar 

  27. Konishi, K.: Advent of non-abelian vortices and monopoles—further thoughts about duality and confinement. Prog. Theor. Phys. Suppl. 177, 83–98 (2009) [arXiv:0809.1370 [hep-th]]

    Google Scholar 

  28. Shifman, M.: Understanding confinement in QCD: elements of a Big Picture. Int. J. Mod. Phys. A 25, 4015–4031 (2010) [arXiv:1007.0531 [hep-th]]

    Google Scholar 

  29. ‘t Hooft, G.: Topology of the gauge condition and new confinement phases in nonabelian gauge theories. Nucl. Phys. B 190 [FS3], 455–478 (1981)

    Google Scholar 

  30. Kronfeld, A., Laursen, M., Schierholz, G., Wiese, U.-J.: Monopole condensation and color confinement. Phys. Lett. B 198, 516–520 (1987)

    Article  ADS  Google Scholar 

  31. Bali, G.S., Bornyakov, V., Muller-Preussker, M., Schilling, K.: Dual superconductor scenario of confinement: A systematic study of Gribov copy effects. Phys. Rev. D 54, 2863–2875 (1996) [arXiv:hep-lat/9603012]

    Google Scholar 

  32. Shiba, H., Suzuki, T.: Monopoles and string tension in SU(2) QCD. Phys. Lett. B 333, 461–466 (1994), hep-lat/9404015

    Google Scholar 

  33. Stack, J., Neiman, S., Wensley, R.: String tension from monopoles in SU(2) lattice gauge theory. Phys. Rev. D 50, 3399–3405 (1994), hep-lat/9404014

    Google Scholar 

  34. Del Debbio, L., Di Giacomo, A., Paffuti, G.: Detecting dual superconductivity in the ground state of gauge theory. Phys. Lett. B 349, 513–518 (1995) [arXiv:hep-lat/9403013]

    Google Scholar 

  35. Di Giacomo, A., Lucini, B., Montesi, L., Paffuti, G.: Color confinement and dual superconductivity of the vacuum. 1. Phys. Rev. D 61, 034503-1–034503-10 (2000) [arXiv:hep-lat/9906024]

    Google Scholar 

  36. Greensite, J., Lucini, B.: Is confinement a phase of broken dual gauge symmetry? Phys. Rev. D 78, 085004-1–085004-7 (2008) [arXiv:0806.2117 [hep-lat]]

    Google Scholar 

  37. Ambjørn, J., Giedt, J., Greensite, J.: Vortex structure versus monopole dominance in Abelian projected gauge theory. JHEP 02, 1–39 (2000) [arXiv: hep-lat/9907021]

    Google Scholar 

  38. Suzuki, T., Yotsuyanagi, I.: A possible evidence for Abelian dominance in quark confinement. Phys. Rev. D 42, 4257–4260 (1990)

    Article  ADS  Google Scholar 

  39. Gubarev, F.V., Kovalenko, A.V., Polikarpov, M.I., Syritsyn, S.N., Zakharov, V.I.: Fine tuned vortices in lattice SU(2) gluodynamics. Phys. Lett. B 574, 136–140 (2003) [arXiv:hep-lat/0212003]

    Google Scholar 

  40. Belavin, A.A., Polyakov, A.M., Shvarts, A.S., Tyupkin, Yu.S.: Pseudoparticle solutions of the Yang–Mills equations. Phys. Lett. B 59, 85–87 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  41. Kraan, T.C., van Baal, P.: Periodic instantons with nontrivial holonomy. Nucl. Phys. B 533, 627–659 (1998) [arXiv:hep-th/9805168]

    Google Scholar 

  42. Kraan, T.C., van Baal, P.: Exact T duality between calorons and Taub-NUT spaces. Phys. Lett. B 428, 268–276 (1998) [arXiv:hep-th/9802049]

    Google Scholar 

  43. Lee, K.M., Lu, C.h.: SU(2) calorons and magnetic monopoles. Phys. Rev. D 58, 025011-1–025011-7 (1998) [arXiv:hep-th/9802108]

    Google Scholar 

  44. Diakonov, D., Petrov, V.: Confining ensemble of dyons. Phys. Rev. D 76, 056001-1–056001-22 (2007) [arXiv:0704.3181 [hep-th]]

    Google Scholar 

  45. Bogomol’ny, E.B.: Stability of classical solutions. Sov. J. Nucl. 24, 449–458 (1976)

    Google Scholar 

  46. Prasad, M.K., Sommerfield, C.M.: An exact classical solution for the 't Hooft monopole and the Julia–Zee dyon. Phys. Rev. Lett. 35, 760–762 (1975)

    Google Scholar 

  47. Harrington, B.J., Shepard, H.K.: Thermodynamics of the Yang–Mills gas. Phys. Rev. D 18, 2990–2994 (1978)

    Google Scholar 

  48. Harrington, B.J., Shepard, H.K.: Periodic Euclidean solutions and the finite temperature Yang–Mills gas. Phys. Rev. D 17, 2122–2125 (1978)

    Google Scholar 

  49. Kraan, T.C., van Baal, P.: Constituent monopoles without gauge fixing. Nucl. Phys. Proc. Suppl. 73, 554–556 (1999) [arXiv:hep-lat/9808015]

    Google Scholar 

  50. Diakonov, D.: Topology and confinement. Nucl. Phys. Proc. Suppl. 195, 5–45 (2009) [arXiv:0906.2456 [hep-ph]]

    Google Scholar 

  51. Bruckmann, F., Dinter, S., Ilgenfritz, E.M., Muller-Preussker, M., Wagner, M.: Cautionary remarks on the moduli space metric for multi-dyon simulations. Phys. Rev. D 79, 116007-1–116007-12 (2009) [arXiv:0903.3075 [hep-ph]]

    Google Scholar 

  52. Gerhold, P., Ilgenfritz, E.M., Muller-Preussker, M.: An SU(2) KvBLL caloron gas model and confinement. Nucl. Phys. B 760, 1–37 (2007) [arXiv:hep-ph/0607315]

    Google Scholar 

  53. Gupta, S., Huebner, K., Kaczmarek, O.: Renormalized Polyakov loops in many representations. Phys. Rev. D 77, 034503-1–034503-16 (2008) [arXiv:0711.2251 [hep-lat]]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Greensite .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Greensite, J. (2010). Monopoles, Calorons, and Dual Superconductivity. In: An Introduction to the Confinement Problem. Lecture Notes in Physics, vol 821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14382-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14382-3_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14381-6

  • Online ISBN: 978-3-642-14382-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics