Skip to main content

Nitrate Transporters and Root Architecture

  • Chapter
  • First Online:
Transporters and Pumps in Plant Signaling

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 7))

Abstract

Nitrogen (N) is one of the most important limiting factors for plant growth and crop production. The root is the most important organ for acquring soil N that is available as NO 3 , NH +4 or amino acids. Soil NO 3 availability to roots is transient and the concentrations of NO 3 can rapidly change in response to climatic factors. Stable soil surface aggregates facilitate a network of continuous and connected pores that can positively affect water flow to the root, and thus the delivery of dissolved NO 3 . Within the root, NO 3 uptake and transport are realised by NO 3 transporters (NRTs). Uniquely, NRT1.1 is capable of functioning in both high- and low-affinity uptake and possesses an NO 3 sensing and signaling capability, regulating other key players in NO 3 uptake, transport and signaling. NRT expression and function are regulated by plant N status and can directly influence the root system architecture, due in part to an overlap with the developmentally important hormones auxin, ethylene, cytokinin and abscisic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abit SM, Amoozegar A, Vepraskas MJ, Niewoehner CP (2008) Fate of nitrate in the capillary fringe and shallow groundwater in a drained sandy soil. Geoderma 146:209–215

    Article  CAS  Google Scholar 

  • Alboresi A, Gestin C, Leydecker MT, Bedu M, Meyer C, Truong HN (2005) Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ 28:500–512

    Article  PubMed  CAS  Google Scholar 

  • Almagro A, Lin SH, Tsay YF (2008) Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. Plant Cell 20:3289–3299

    Article  PubMed  CAS  Google Scholar 

  • Bao J, Chen FJ, Gu RL, Wang GY, Zhang FS, Mi GH (2007) Lateral root development of two Arabidopsis auxin transport mutants, auxl-7 and eirl-1, in response to nitrate supplies. Plant Sci 173:417–425

    Article  CAS  Google Scholar 

  • Bergsdorf EY, Zdebik AA, Jentsch TJ (2009) Residues important for nitrate/proton coupling in plant and mammalian CLC transporters. J Biol Chem 284:11184–11193

    Article  PubMed  CAS  Google Scholar 

  • Bibikova T, Gilroy S (2002) Root hair development. J Plant Growth Regul 21:383–415

    Article  CAS  Google Scholar 

  • Borlaug NE (1992) World food security and the legacy of canadian wheat scientist Anderson, R., Glenn. Can J Plant Pathol 14:254–266

    Article  Google Scholar 

  • Busov VB, Brunner AM, Strauss SH (2008) Genes for control of plant stature and form. New Phytol 177:589–607

    Article  PubMed  CAS  Google Scholar 

  • Casson SA, Lindsey K (2003) Genes and signaling in root development. New Phytol 158:11–38

    CAS  Google Scholar 

  • Cerezo M, Tillard P, Filleur S, Munos S, Daniel-Vedele F, Gojon A (2001) Major alterations of the regulation of root NO3- uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in arabidopsis. Plant Physiol 127:262–271

    Article  PubMed  CAS  Google Scholar 

  • Chen YF, Wang Y, Wu WH (2008) Membrane transporters for nitrogen, phosphate and potassium uptake in plants. J Integr Plant Biol 50:835–848

    Article  PubMed  CAS  Google Scholar 

  • Chiu CC, Lin CS, Hsia AP, Su RC, Lin HL, Tsay YF (2004) Mutation of a nitrate transporter, AtNRT1: 4, results in a reduced petiole nitrate content and altered leaf development. Plant Cell Physiol 45:1139–1148

    Article  PubMed  CAS  Google Scholar 

  • Chopin F, Orsel M, Dorbe MF, Chardon F, Truong HN, Miller AJ, Krapp A, Daniel-Vedele F (2007a) The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. Plant Cell 19:1590–1602

    Article  PubMed  CAS  Google Scholar 

  • Chopin F, Wirth J, Dorbe MF, Lejay L, Krapp A, Gojon A, Daniel-Vedele F (2007b) The Arabidopsis nitrate transporter AtNRT2.1 is targeted to the root plasma membrane. Plant Physiol Biochem 45:630–635

    Article  PubMed  CAS  Google Scholar 

  • Clark LJ, Whalley WR, Barraclough PB (2003) How do roots penetrate strong soil? Plant Soil 255:93–104

    Article  CAS  Google Scholar 

  • Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395

    Article  Google Scholar 

  • Daniel-Vedele F, Filleur S, Caboche M (1998) Nitrate transport: a key step in nitrate assimilation. Curr Opin Plant Biol 1:235–239

    Article  PubMed  CAS  Google Scholar 

  • De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-Brygoo H (2006) The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442:939–942

    Article  PubMed  CAS  Google Scholar 

  • De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-Brygoo H (2009) CLC-mediated anion transport in plant cells. Philos Trans R Soc Lond B Biol Sci 364:195–201

    Article  PubMed  CAS  Google Scholar 

  • De Kroon H, Visser EJW, Huber H, Mommer L, Hutchings MJ (2009) A modular concept of plant foraging behaviour: the interplay between local responses and systemic control. Plant Cell Environ 32:704–712

    Article  PubMed  CAS  Google Scholar 

  • Deak KI, Malamy J (2005) Osmotic regulation of root system architecture. Plant J 43:17–28

    Article  PubMed  CAS  Google Scholar 

  • Desnos T (2008) Root branching responses to phosphate and nitrate. Curr Opin Plant Biol 11:82–87

    Article  PubMed  CAS  Google Scholar 

  • Doddema H, Hofstra JJ, Feenstra WJ (1978) Uptake of nitrate by mutants of Arabidopsis thaliana, disturbed in uptake or reduction of nitrate. 1. Effect of nitrogen source during growth on uptake of nitrate and chlorate. Physiol Plant 43:343–350

    Article  CAS  Google Scholar 

  • Drew MC, Saker LR (1975) Nutrient supply and growth of seminal root system in barley. 2. Localized, compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of root system. J Exp Bot 26:79–90

    Article  CAS  Google Scholar 

  • Driouich A, Durand C, Vicre-Gibouin M (2007) Formation and separation of root border cells. Trends Plant Sci 12:14–19

    Article  PubMed  CAS  Google Scholar 

  • Fan SC, Lin CS, Hsu PK, Lin SH, Tsay YF (2009) The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell 21:2750–2761

    Article  PubMed  CAS  Google Scholar 

  • Feng CP, Mundy J (2006) Gene discovery and functional analyses in the model plant Arabidopsis. J Integr Plant Biol 48:5–14

    Article  CAS  Google Scholar 

  • Forde BG (2000) Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta 1465:219–235

    Article  PubMed  CAS  Google Scholar 

  • Fukaki H, Tasaka M (2009) Hormone interactions during lateral root formation. Plant Mol Biol 69:437–449

    Article  PubMed  CAS  Google Scholar 

  • Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA 105:803–808

    Article  PubMed  CAS  Google Scholar 

  • Girin T, Lejay L, Wirth J, Widiez T, Palenchar PM, Nazoa P, Touraine B, Gojon A, Lepetit M (2007) Identification of a 150 bp cis-acting element of the AtNRT2.1 promoter involved in the regulation of gene expression by the N and C status of the plant. Plant Cell Environ 30:1366–1380

    Article  PubMed  CAS  Google Scholar 

  • Gojon A, Nacry P, Davidian JC (2009) Root uptake regulation: a central process for NPS homeostasis in plants. Curr Opin Plant Biol 12:328–338

    Article  PubMed  CAS  Google Scholar 

  • Gorska A, Ye Q, Holbrook NM, Zwieniecki MA (2008) Nitrate control of root hydraulic properties in plants: translating local information to whole plant response. Plant Physiol 148:1159–1167

    Article  PubMed  CAS  Google Scholar 

  • Guo FQ, Wang RC, Crawford NM (2002) The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is regulated by auxin in both shoots and roots. J Exp Bot 53:835–844

    Article  PubMed  CAS  Google Scholar 

  • Guo FO, Young J, Crawford NM (2003) The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in arabidopsis. Plant Cell 15:107–117

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez RA, Lejay LV, Dean A, Chiaromonte F, Shasha DE, Coruzzi GM (2007) Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis. Genome Biol 8:13

    Article  CAS  Google Scholar 

  • Ho CH, Lin SH, Hu HC, Tsay YF (2009) CHL1 functions as a nitrate sensor in plants. Cell 138:1184–1194

    Article  PubMed  CAS  Google Scholar 

  • Hong YY, Devaiah SP, Bahn SC, Thamasandra BN, Li MY, Welti R, Wang XM (2009) Phospholipase D epsilon and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. Plant J 58:376–387

    Article  PubMed  CAS  Google Scholar 

  • Hu HC, Wang YY, Tsay YF (2009) AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. Plant J 57(2):264–278

    Article  PubMed  CAS  Google Scholar 

  • Huang NC, Liu KH, Lo HJ, Tsay YF (1999) Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell 11:1381–1392

    PubMed  CAS  Google Scholar 

  • Iijima M, Morita S, Barlow PW (2008) Structure and function of the root cap. Plant Prod Sci 11:17–27

    Article  Google Scholar 

  • Jonassen EM, Lea US, Lillo C (2008) HY5 and HYH are positive regulators of nitrate reductase in seedlings and rosette stage plants. Planta 227:559–564

    Article  PubMed  CAS  Google Scholar 

  • Jonassen EM, Sevin DC, Lillo C (2009) The bZIP transcription factors HY5 and HYH are positive regulators of the main nitrate reductase gene in Arabidopsis leaves, NIA2, but negative regulators of the nitrate uptake gene NRT1.1. J Plant Physiol 166:2071–2076

    Article  PubMed  CAS  Google Scholar 

  • Komarova NY, Thor K, Gubler A, Meier S, Dietrich D, Weichert A, Grotemeyer MS, Tegeder M, Rentsch D (2008) AtPTR1 and AtPTR5 transport dipeptides in planta. Plant Physiol 148:856–869

    Article  PubMed  CAS  Google Scholar 

  • Krapp A, Fraisier V, Scheible WR, Quesada A, Gojon A, Stitt M, Caboche M, Daniel-Vedele F (1998) Expression studies of Nrt2: 1Np, a putative high-affinity nitrate transporter: evidence for its role in nitrate uptake. Plant J 14:723–731

    Article  CAS  Google Scholar 

  • Krouk G, Tillard P, Gojon A (2006) Regulation of the high-affinity NO3- uptake system by NRT1.1-mediated NO3- demand signaling in Arabidopsis. Plant Physiol 142:1075–1086

    Article  PubMed  CAS  Google Scholar 

  • Krouk G, Tranchina D, Lejay L, Cruikshank AA, Shasha D, Coruzzi GM, Gutierrez RA (2009) A systems approach uncovers restrictions for signal interactions regulating genome-wide responses to nutritional cues in Arabidopsis. PLoS Comput Biol 5:12

    Article  CAS  Google Scholar 

  • Krouk G, Crawford N, Coruzzi GM, Tsay YF (2010) Nitrate signaling: adaptation to fluctuating environments. Curr Opin Plant Biol 13:1–8

    Article  CAS  Google Scholar 

  • Lejay L, Tillard P, Lepetit M, Olive FD, Filleur S, Daniel-Vedele F, Gojon A (1999) Molecular and functional regulation of two NO3- uptake systems by N- and C-status of Arabidopsis plants. Plant J 18:509–519

    Article  PubMed  CAS  Google Scholar 

  • Li WB, Wang Y, Okamoto M, Crawford NM, Siddiqi MY, Glass ADM (2007) Dissection of the AtNRT2.1: AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiol 143:425–433

    Article  PubMed  CAS  Google Scholar 

  • Lin CM, Koh S, Stacey G, Yu SM, Lin TY, Tsay YF (2000) Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice. Plant Physiol 122:379–388

    Article  PubMed  CAS  Google Scholar 

  • Lin SH, Kuo HF, Canivenc G, Lin CS, Lepetit M, Hsu PK, Tillard P, Lin HL, Wang YY, Tsai CB, Gojon A, Tsay YF (2008) Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell 20:2514–2528

    Article  PubMed  CAS  Google Scholar 

  • Linkohr BI, Williamson LC, Fitter AH, Leyser HMO (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J 29:751–760

    Article  PubMed  CAS  Google Scholar 

  • Little DY, Rao HY, Oliva S, Daniel-Vedele F, Krapp A, Malamy JE (2005) The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc Natl Acad Sci USA 102:13693–13698

    Article  PubMed  CAS  Google Scholar 

  • Liu KH, Tsay YF (2003) Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J 22:1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Liu KH, Huang CY, Tsay YF (1999) CHL1 is a dual-affinity nitrate transporter of arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11:865–874

    PubMed  CAS  Google Scholar 

  • Liu K, Kozono D, Kato Y, Agre P, Hazama A, Yasui M (2005) Conversion of aquaporin 6 from an anion channel to a water-selective channel by a single amino acid substitution. Proc Natl Acad Sci USA 102:2192–2197

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Bucio J, Cruz-Ramirez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    Article  PubMed  CAS  Google Scholar 

  • Loque D, Tillard P, Gojon A, Lepetit M (2003) Gene expression of the NO3- transporter NRT1.1 and the nitrate reductase NIA1 is repressed in Arabidopsis roots by NO2-, the product of NO3- reduction. Plant Physiol 132:958–967

    Article  PubMed  CAS  Google Scholar 

  • Loque D, Ludewig U, Yuan LX, von Wiren N (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol 137:671–680

    Article  PubMed  CAS  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Martin Y, Navarro FJ, Siverio JM (2008) Functional characterization of the Arabidopsis thaliana nitrate transporter CHL1 in the yeast Hansenula polymorpha. Plant Mol Biol 68:215–224

    Article  PubMed  CAS  Google Scholar 

  • Miller AJ, Cramer MD (2005) Root nitrogen acquisition and assimilation. Plant Soil 274:1–36

    Article  CAS  Google Scholar 

  • Miller AJ, Smith SJ (2008) Cytosolic nitrate ion homeostasis: could it have a role in sensing nitrogen status? Ann Bot 101:485–489

    Article  PubMed  CAS  Google Scholar 

  • Miller AJ, Fan XR, Orsel M, Smith SJ and Wells DM (2007a) Nitrate transport and signaling. International Symposium on Nitrogen Nutrition in Plants, Lancaster, England

    Google Scholar 

  • Miller AJ, Fan XR, Orsel M, Smith SJ, Wells DM (2007b) Nitrate transport and signaling. J Exp Bot 58:2297–2306

    Article  PubMed  CAS  Google Scholar 

  • Miller AJ, Shen QR, Xu GH (2009) Freeways in the plant: transporters for N, P and S and their regulation. Curr Opin Plant Biol 12:284–290

    Article  PubMed  CAS  Google Scholar 

  • Muller B, Touraine B (1992) Inhibition of NO 3 uptake by various phloem-translocated amino-acids in soybean seedlings. J Exp Bot 43:617–623

    Article  CAS  Google Scholar 

  • Munos S, Cazettes C, Fizames C, Gaymard F, Tillard P, Lepetit M, Lejay L, Gojon A (2004) Transcript profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. Plant Cell 16:2433–2447

    Article  PubMed  CAS  Google Scholar 

  • Nazoa P, Vidmar JJ, Tranbarger TJ, Mouline K, Damiani I, Tillard P, Zhuo DG, Glass ADM, Touraine B (2003) Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: responses to nitrate, amino acids and developmental stage. Plant Mol Biol 52:689–703

    Article  PubMed  CAS  Google Scholar 

  • Nero D, Krouk G, Tranchina D, Coruzzi GM (2009) A system biology approach highlights a hormonal enhancer effect on regulation of genes in a nitrate responsive “biomodule”. BMC Syst Biol 3:17

    Article  CAS  Google Scholar 

  • Okamoto M, Kumar A, Li WB, Wang Y, Siddiqi MY, Crawford NM, Glass ADM (2006) High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1. Plant Physiol 140:1036–1046

    Article  PubMed  CAS  Google Scholar 

  • Orsel M, Filleur S, Fraisier V, Daniel-Vedele F (2002a) Nitrate transport in plants: which gene and which control? J Exp Bot 53:825–833

    Article  PubMed  CAS  Google Scholar 

  • Orsel M, Krapp A, Daniel-Vedele F (2002b) Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression. Plant Physiol 129:886–896

    Article  PubMed  CAS  Google Scholar 

  • Orsel M, Eulenburg K, Krapp A, Daniel-Vedele F (2004) Disruption of the nitrate transporter genes AtNRT2.1 and AtNRT2.2 restricts growth at low external nitrate concentration. Planta 219:714–721

    Article  PubMed  CAS  Google Scholar 

  • Orsel M, Chopin F, Leleu O, Smith SJ, Krapp A, Daniel-Vedele F, Miller AJ (2006) Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction. Plant Physiol 142:1304–1317

    Article  PubMed  CAS  Google Scholar 

  • Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde BG, Gojon A (2006a) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci USA 103:19206–19211

    Article  PubMed  CAS  Google Scholar 

  • Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A (2006b) A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol 140:909–921

    Article  PubMed  CAS  Google Scholar 

  • Rensink WA, Buell CR (2004) Arabidopsis to rice. Applying knowledge from a weed to enhance our understanding of a crop species. Plant Physiol 135:622–629

    Article  PubMed  CAS  Google Scholar 

  • Rubio V, Bustos R, Irigoyen ML, Cardona-Lopez X, Rojas-Triana M, Paz-Ares J (2009) Plant hormones and nutrient signaling. Plant Mol Biol 69:361–373

    Article  PubMed  CAS  Google Scholar 

  • Segal E, Kushnir T, Mualem Y, Shani U (2008) Water uptake and hydraulics of the root hair rhizosphere. Vadose Zone J 7:1027–1034

    Article  Google Scholar 

  • Segonzac C, Boyer JC, Ipotesi E, Szponarski W, Tillard P, Touraine B, Sommerer N, Rossignol M, Gibrat R (2007) Nitrate efflux at the root plasma membrane: Identification of an Arabidopsis excretion transporter. Plant Cell 19:3760–3777

    Article  PubMed  CAS  Google Scholar 

  • Signora L, De Smet I, Foyer CH, Zhang HM (2001) ABA plays a central role in mediating them regulatory effects of nitrate on root branching in Arabidopsis. Plant J 28:655–662

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Fischer U, Singh M, Grebe M, Marchant A (2008) Insight into the early steps of root hair formation revealed by the procuste1 cellulose synthase mutant of Arabidopsis thaliana. BMC Plant Biol 8:12

    Article  CAS  Google Scholar 

  • Somasundaram S, Fukuzono S, Iijima M (2008) Dynamics of root border cells in rhizosphere Soil of Zea mays L.: crushed cells during root penetration, survival in soil, and long term soil compaction effect. Plant Prod Sci 11:440–446

    Article  Google Scholar 

  • Svirejeva-Hopkins A, Schellnhuber HJ (2008) Urban expansion and its contribution to the regional carbon emissions: Using the model based on the population density distribution. Ecol Modell 216:208–216

    Article  Google Scholar 

  • Takei K, Takahashi T, Sugiyama T, Yamaya T and Sakakibara H (2001) Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. 6th International Symposium on Inorganic Nitrogen Assimilation, Reims, France

    Google Scholar 

  • Takei K, Ueda N, Aoki K, Kuromori T, Hirayama T, Shinozaki K, Yamaya T, Sakakibara H (2004) AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiol 45:1053–1062

    Article  PubMed  CAS  Google Scholar 

  • Teyker RH, Jackson WA, Volk RJ, Moll RH (1988) Exogenous (NO 3 )-N-15 influx and endogenous (NO 3 )-N-15 efflux by 2 maize (Zea mays L.) inbreds during nitrogen deprivation. Plant Physiol 86:778–781

    Article  PubMed  CAS  Google Scholar 

  • Tian QY, Chen FJ, Liu JX, Zhang FS, Mi GH (2008) Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J Plant Physiol 165:942–951

    Article  PubMed  CAS  Google Scholar 

  • Tian QY, Sun P, Zhang WH (2009) Ethylene is involved in nitrate- root growth and branching in Arabidopsis thaliana. New Phytol 184:918–931

    Article  PubMed  CAS  Google Scholar 

  • Tillard P, Passama L, Gojon A (1998) Are phloem amino, acids involved in the shoot to root control of NO3- uptake in Ricinus communis plants? J Exp Bot 49:1371–1379

    CAS  Google Scholar 

  • Tong Y, Zhou JJ, Li ZS, Miller AJ (2005) A two-component high-affinity nitrate uptake system in barley. Plant J 41:442–450

    Article  PubMed  CAS  Google Scholar 

  • Tsay YF, Schroeder JI, Feldmann KA, Crawford NM (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72:705–713

    Article  PubMed  CAS  Google Scholar 

  • Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 581:2290–2300

    Article  PubMed  CAS  Google Scholar 

  • van der Leij M, Smith SJ, Miller AJ (1998) Remobilisation of vacuolar stored nitrate in barley root cells. Planta 205:64–72

    Article  Google Scholar 

  • Vidal EA, Gutierrez RA (2008) A systems view of nitrogen nutrient and metabolite responses in Arabidopsis. Curr Opin Plant Biol 11:521–529

    Article  PubMed  CAS  Google Scholar 

  • Visser EJW, Bogemann GM, Smeets M, de Bruin S, de Kroon H, Bouma TJ (2008) Evidence that ethylene signaling is not involved in selective root placement by tobacco plants in response to nutrient-rich soil patches. New Phytol 177:457–465

    PubMed  Google Scholar 

  • Walch-Liu P, Forde BG (2008) Nitrate signaling mediated by the NRT1.1 nitrate transporter antagonises L-glutamate-induced changes in root architecture. Plant J 54:820–828

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Inukai Y, Yamauchi A (2006) Root development and nutrient uptake. Crit Rev Plant Sci 25:279–301

    Article  CAS  Google Scholar 

  • Wang RC, Xing XJ, Wang Y, Tran A, Crawford NM (2009) A genetic screen for nitrate regulatory mutants captures the nitrate transporter gene NRT1.1. Plant Physiol 151:472–478

    Article  PubMed  CAS  Google Scholar 

  • Wirth J, Chopin F, Santoni V, Viennois G, Tillard P, Krapp A, Lejay L, Daniel-Vedele F, Gojon A (2007) Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana. J Biol Chem 282:23541–23552

    Article  PubMed  CAS  Google Scholar 

  • Xu LZ, Niu JF, Li CJ, Zhang FS (2009) Growth, nitrogen uptake and flow in maize plants affected by root growth restriction. J Integr Plant Biol 51:689–697

    Article  PubMed  CAS  Google Scholar 

  • Yin LP, Li P, Wen B, Taylor D, Berry JO (2007) Characterization and expression of a high-affinity nitrate system transporter gene (TaNRT2.1) from wheat roots, and its evolutionary relationship to other NTR2 genes. Plant Sci 172:621–631

    Article  CAS  Google Scholar 

  • Zeuthen T, Meinild AK, Klaerke DA, Loo DDF, Wright EM, Belhage B, Litman T (1997) Water transport by the Na+/glucose cotransporter under isotonic conditions. Biol Cell 89:307–312

    PubMed  CAS  Google Scholar 

  • Zhang HM, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409

    Article  PubMed  CAS  Google Scholar 

  • Zhang HM, Jennings A, Barlow PW, Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA 96:6529–6534

    Article  PubMed  CAS  Google Scholar 

  • Zhao XQ, Li YJ, Liu JZ, Li B, Liu QY, Tong YP, Li JY, Li ZS (2004) Isolation and expression analysis of a high-affinity nitrate transporter TaNRT2.3 from roots of wheat. Acta Bot Sin 46:347–354

    CAS  Google Scholar 

  • Zhou JJ, Theodoulou FL, Muldin I, Ingemarsson B, Miller AJ (1998) Cloning and functional characterization of a Brassica napus transporter that is able to transport nitrate and histidine. J Biol Chem 273:12017–12023

    Article  PubMed  CAS  Google Scholar 

  • Zhou JJ, Fernandez E, Galvan A, Miller AJ (2000) A high affinity nitrate transport system from Chlamydomonas requires two gene products. FEBS Lett 466:225–227

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chapman, N., Miller, T. (2011). Nitrate Transporters and Root Architecture. In: Geisler, M., Venema, K. (eds) Transporters and Pumps in Plant Signaling. Signaling and Communication in Plants, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14369-4_6

Download citation

Publish with us

Policies and ethics