Abstract
Images from high-resolution scanning ophthalmic instruments are significantly distorted due to eye movement. Accurate image registration is required to successfully image subjects who are unable to fixate due to retinal conditions. Moreover, all scanning ophthalmic imaging modalities using adaptive optics will benefit from image registration, even in subjects with good fixation and anaesthetized animals. Transformation functions used to map two images could in principle be very complex. Here, we show that when the scanning in ophthalmic instruments is sufficiently fast with respect to the speed of involuntary eye movement, these mapping functions become the addition of a linear term and a single variable function. Then, based on experimental data on eye movement amplitude and speed of the fixating eye, minimum sampling frequencies for these instruments are discussed. Finally, a simple method for estimating the image transformation functions by taking advantage of the finite bandwidth of the motion signals is presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Liang, J., Williams, D.R., Miller, D.T.: Supernormal vision and high-resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. A 14(11), 2884–2892 (1997)
Rha, J., Jonnal, R.S., Thorn, K.E., Qu, J., Zhang, Y., Miller, D.T.: Adaptive optics flood-illumination camera for high speed retinal imaging. Opt. Exp. 14(10), 4552–4569 (2006)
Hermann, B., Fernandez, E.J., Unterhuber, A., Sattmann, H., Fercher, A.F., Drexler, W., Prieto, P.M., Artal, P.: Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt. Lett. 29(18), 2142–2144 (2004)
Zawadzki, R., Jones, S., Olivier, S., Zhao, M., Bower, B., Izatt, J., Choi, S., Laut, S., Werner, J.: Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt. Exp. 13(21), 8532–8546 (2005)
Fernandez, E.J., Povazay, B., Hermann, B., Unterhuber, A., Sattmann, H., Prieto, P.M., Leitgeb, R., Ahnelt, P., Artal, P., Drexler, W.: Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator. Vision Res. 14(20), 8900–8917 (2006)
Zhang, Y., Rha, J., Jonnal, R., Miller, D.: Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. Opt. Exp. 13(12), 4792–4811 (2005)
Merino, D., Dainty, C., Bradu, A., Podoleanu, A.G.: Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy. Opt. Exp. 14(8), 3345–3353 (2006)
Bigelow, C.E., Iftimia, N.V., Ferguson, R.D., Ustun, T.E., Bloom, B., Hammer, D.X.: Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging. J. Opt. Soc. Am. A 24(5), 1327–1336 (2007)
Roorda, A., Romero-Borja, F., Donnelly III, W.J., Queener, H., Hebert, T.J., Campbell, M.C.W.: Adaptive optics scanning laser ophthalmoscopy. Opt. Exp. 10(9), 405–412 (2002)
Gray, D.C., Merigan, W., Wolfing, J.I., Gee, B.P., Porter, J., Dubra, A., Twietmeyer, T.H., Ahamd, K., Tumbar, R., Reinholz, F., Williams, D.R.: In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells. Opt. Exp. 14(16), 7144–7158 (2006)
Burns, S.A., Tumbar, R., Elsner, A.E., Ferguson, D., Hammer, D.X.: Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope. J. Opt. Soc. Am. A 24(5), 1313–1326 (2007)
Morgan, J.I.W., Dubra, A., Wolfe, R., Merigan, W.H., Williams, D.R.: In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic. Invest. Ophth. Vis. Sci. 50(3), 1350–1359 (2009)
American National Standard for safe use of lasers (ANSI Z136.1), Laser Institute of America, Orlando, Florida, USA (2007)
Stevenson, S.B., Roorda, A.: Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy. In: Proc. SPIE, vol. 5688A, pp. 145–151 (2005)
Hart Jr., W.H.: Adler’s physiology of the eye: clinical application, 9th edn., Mosby-Year Book Inc., 11830 Westline Industrial Drive, St. Louis, Missouri 63146 (1992)
Riggs, L.A., Armington, J.C., Ratliff, F.: Motions of the retinal image during fixation. J. Opt. Soc. Am. 44(4), 315–321 (1954)
Eizenman, M., Hallett, P.E., Frecker, R.C.: Power spectra for ocular drift and tremor. Vision Res. 25(11), 1635–1640 (1985)
Ditchburn, R.W., Ginsborg, B.L.: Involuntary eye movements during fixation. J. Physiol. 119, 1–17 (1953)
Whittaker, S.G., Budd, J., Cummings, R.W.: Eccentric fixation with macular scotoma. Invest. Ophth. Vis. Sci. 29(2), 268–278 (1988)
Smith, G., Atchison, D.A.: The eye and visual optical instrumentation, 1st edn. Cambridge University Press, Cambridge (1997)
Charman, N.: Handbook of optics: Vision and vision optics. In: Bass, M. (ed.) Optics of the Eye, ch. 1, 3rd edn., vol. III. Mc Graw Hill, New York (2009)
Arathorn, D.W., Yang, Q., Vogel, C.R., Zhang, Y., Tiruveedhula, P., Roorda, A.: Retinally stabilized cone-targeted stimulus delivery. Opt. Exp. 15(21), 13731–13744 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dubra, A., Harvey, Z. (2010). Registration of 2D Images from Fast Scanning Ophthalmic Instruments. In: Fischer, B., Dawant, B.M., Lorenz, C. (eds) Biomedical Image Registration. WBIR 2010. Lecture Notes in Computer Science, vol 6204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14366-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-14366-3_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14365-6
Online ISBN: 978-3-642-14366-3
eBook Packages: Computer ScienceComputer Science (R0)
