Calibration and Validation of Simulation Models for Investigation of Traffic Assistance Systems

Conference paper


In recent years, initial proposals have been presented for advanced driver assistance systems (ADAS) which globally optimize traffic flow by means of the interaction of autonomous vehicles. This kind of ADAS will hereinafter be referred to as traffic assistance system (TAS). For the design, optimization and evaluation of these TAS, investigative simulations simultaneously considering both microscopic and macroscopic behavior are necessary. Therefore, in this paper a two-level approach for calibration and validation of traffic simulations is presented. This contribution presents a new measurement concept that is needed to gather the required data for the suggested two-level approach for calibration and validation. This concept advocates simultaneous data acquisition sourced from both a vehicle (microscopic) and an overall traffic (macroscopic) perspective which is furtheron compared to simulative data of both systemic levels. The paper describes the concept of calibration and validation of a car-following model with respect to intra- und inter-driver-variability, which makes it necessary to consider a distribution for each parameter in use. First empirical parameter distributions and their subsequent use in the Gipp’s car following model are described in this paper. Results of a macroscopic validation with regard to headway distribution are presented. Compared to the current state of the art, the application of the two-level approach for calibration and validation with the gathered microscopic and macroscopic measurement data will enhance the possibilities to investigate the efficiency of TAS and yield results which are characterized by a higher degree of confidence.


Advanced Driver Assistance System Systems Theory Traffic Modeling Traffic Simulation Calibration Validation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Elmar Brockfeld, Rene Kelpin, and Peter Wagner. Performance of car following behaviour in microscopic traffic flow models. In W. Möhlenbrink, editor, 2nd International Symposium “Networks for Mobility” pages 43–43. Universität Stuttgart, 2004Google Scholar
  2. 2.
    S. Detering and E. Schnieder. Requirements for precise simulation models for traffic flow optimizing adas. In 12th IFAC Symposium on Control in Transportation Systems (CTS’09) Redondo Beach, USA, 2009Google Scholar
  3. 3.
    Stefan Detering. Verkehrsleittechnik - Automatisierung des Straßen- und Schienenverkehrs, chapter Flusssteuerung im Straßenverkehr, pages 155 – 194. Springer, 2007Google Scholar
  4. 4.
    Peter G. Gipps. A behavioural car-following model for computer simulation. Transportation Research Part B: Methodological 15(2):105–111, April 1981CrossRefGoogle Scholar
  5. 5.
    Dirk Helbing. Verkehrsdynamik - Neue pyhsikalische Modellierungskonzepte. Springer, 1997Google Scholar
  6. 6.
    B.S. Kerner. Physics of Traffic: Empirical Freeway Pattern Features, Engineering Applications, and Theory. Springer Verlag, 2004Google Scholar
  7. 7.
    Arne Kesting. Microscopic Modeling of Human and Automated Driving: Towards Traffic-Adaptive Cruise Control. PhD thesis, Technische Universität Dresden, Fakultät für Verkehrswissenschaften “Friedrich List”, 2008Google Scholar
  8. 8.
    Florian Kranke, Holger Poppe, Arne Kesting, and Martin Treiber. Der Baustellenlotse - Ein stauvermeidenes Fahrerassistenzsystem. Straßenverkehrstechnik, 1:12–19, 2010Google Scholar
  9. 9.
    Timo Schneider. Sensorsysteme zur Verkehrslageerfassung auf Bundesautobahnen. Bachelorarbeit, Institut für Verkehrssicherheit und Automatisierungstechnik, Technische Universität Braunschweig, 2010Google Scholar
  10. 10.
    Eckehard Schnieder. Methoden der Automatisierungstechnik - Beschreibungsmittel, Modellkonzepte und Werkzeuge für Automatisierungssysteme. Vieweg, 1999Google Scholar
  11. 11.
    L. Schnieder. Towards terminological rigour in the specification of complex automation systems. In G. Schnieder, E.; Tarnai, editor, Proceedings of Symposium FORMS/FORMAT pages 141–148, Budapest/Hungary, 2008Google Scholar
  12. 12.
    Roland Trapp. Hinweise zur mikroskopischen Verkehrsflusssimulation. FGSV Verlag, 2006Google Scholar
  13. 13.
    Michael Zhang, Ma Jingtao, and Hu Dong. Developing calibration tools for microscopic traffic simulation final report part 2: Calibration framework and calibration of local/global driving behavior and departure/route choice model parameters. Technical report, California Path Program, Institute of Transportation Studies, University of California, Berkely, 2008Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute for Traffic Safety and Automation Engineering Technische Universität BraunschweigBraunschweigGermany

Personalised recommendations