Using Guided Simulation to Assess Driver Assistance Systems

  • Martin Fränzle
  • Tayfun Gezgin
  • Hardi Hungar
  • Stefan Puch
  • Gerald Sauter
Conference paper

Abstract

The goal of our approach is the model-based prediction of the effects of driver assistance systems. To achieve this we integrate models of a driver and a car within a simulation environment and face the problem of analysing the emergent effects of the resulting complex system with discrete, numeric and probabilistic components. In particular, it is difficult to assess the probability of rare events, though we are specifically interested in critical situations which will be infrequent for any reasonable system. For that purpose, we use a quantitative logic which enables us to specify criticality and other properties of simulation runs. An online evaluation of the logic permits us to define a procedure which guides the simulation towards critical situations and allows to estimate the risk connected with the introduction of the assistance system.

Keywords

Guided Simulation Formal Specification Model Integration Model-based Design Assistance System Driver Modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Baumann, H. Colonius, H. Hungar, F. Köster, M. Langner, A. Lüdtke, C. Möbus, J. Peinke, S. Puch, C. Schiessl, R. Steenken, and L.Weber. Integrated modelling for safe transportation - driver modeling and driver experiments, In: Fahrermodellierung in Wissenschaft und Wirtschaft, 2. Berliner Fachtagung für Fahrzeugsmodellierung. VDI Verlag, Düesseldorf, 2008.Google Scholar
  2. 2.
    L. de Alfaro, M. Faella, and M. I. A. Stoelinga. Linear and branching metrics for quantitative transition systems. In Proc. 31st Int’l Colloq. on Automata, Languages and Programming (ICALP04), Turku, Finland, volume 3142 of Lecture Notes in Computer Science, pages 97–109, Berlin, 2004. Springer.Google Scholar
  3. 3.
    IEEE 1516-2000 Standard for Modeling and Simulation (M&S). High level architecture - framework and rules. IEEE Computer Society Press, September 2000.Google Scholar
  4. 4.
    T. Gezgin. Observerbasierte on-the-fly Auswertung von QLTL-Formeln innerhalb eines HLA-Simulationsverbundes. Master’s thesis, Carl von Ossietzky University Oldenburg, 2009.Google Scholar
  5. 5.
    Claus Möbus and Mark Eilers. Further steps towards driver modeling according to the bayesian programming approach. In Vincent Duffy, editor, Digital Human Modeling, volume 5620 of Lecture Notes in Computer Science, pages 413–422. Springer Berlin / Heidelberg, 2009.Google Scholar
  6. 6.
    Claus Möbus, Mark Eilers, Hilke Garbe, and Malte Zilinski. Probabilistic and empirical grounded modeling of agents in (partial) cooperative traffic scenarios. In Vincent Duffy, editor, Digital Human Modeling, volume 5620 of Lecture Notes in Computer Science, pages 423–432. Springer Berlin / Heidelberg, 2009.Google Scholar
  7. 7.
    Gerald Sauter, Henning Dierks, Martin Fränzle, and Michael R. Hansen. Lightweight hybrid model checking facilitating online prediction of temporal properties. In Proceedings of the 21st Nordic Workshop on Programming Theory, NWPT ’09, pages 20–22, Kgs. Lyngby, Denmark, 2009. Danmarks Tekniske Universitet.Google Scholar
  8. 8.
    L.Weber, M. Baumann, A. Lüdtke, and R. Steenken. Modellierung von Entscheidungen beim Einfädeln auf die Autobahn. To appear: Fortschritts-Berichte VDI: Der Mensch im Mittelpunkt technischer Systeme. 8. Berliner Werkstatt Mensch- Maschine-Systeme, 2009.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Martin Fränzle
    • 1
  • Tayfun Gezgin
    • 2
  • Hardi Hungar
    • 2
  • Stefan Puch
    • 1
  • Gerald Sauter
    • 1
  1. 1.Department of Computer ScienceCarl von Ossietzky Universität OldenburgOldenburgGermany
  2. 2.OFFISOldenburgGermany

Personalised recommendations