Advertisement

Eulerian and Lagrangian Insights into a Turbulent Boundary Layer Flow Using Time Resolved Tomographic PIV

  • A. Schröder
  • R. Geisler
  • K. Staack
  • A. Henning
  • B. Wieneke
  • G. E. Elsinga
  • F. Scarano
  • C. Poelma
  • J. Westerweel
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 112)

Summary

Turbulent boundary layer (TBL) flow consists of manifold temporal and spatial scales and is governed by the organization and decay of self-sustaining coherent flow structures driven by entrained high momentum fluid. Generic flow structures such as hairpin-like vortices and spanwise alternating wall bounded low- and high-speed streaks have been observed and extensively analyzed with both experimental and numerical methods. The role of these structures for the wall normal and spanwise fluid exchange has been highlighted mostly within an Eulerian reference frame. But for an understanding of the momentum exchange in turbulent wall flows a step towards a spatially resolved Lagrangian frame of reference would be advantageous. The data achieved from the present application of time-resolved tomographic PIV to a flat plate turbulent boundary layer flow enables for the first time the investigation of the flow structures and related particle motions within a temporally and spatially resolved Lagrangian and Eulerian frame of reference.

Keywords

Turbulent Boundary Layer Particle Tracking Velocimetry Turbulent Spot Tomographic Particle Image Velocimetry Turbulent Boundary Layer Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yeung, P.K.: Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech. 34, 115–142 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Biferale, L., Boffetta, G., Celani, A., Lanotte, A., Toschi, E.: Lagrangian statistics in fully developed turbulence. Journal of Turbulence 7(6) (2006)Google Scholar
  3. 3.
    Virant, M., Dracos, T.: 3D PTV and its application on Lagrangian motion. Meas. Sci. Technol. 8, 1539–1552 (1997)CrossRefGoogle Scholar
  4. 4.
    Mordant, N., Lévèque, E., Pinton, J.-F.: Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence. New J. Phys. 6, 34 (2004)CrossRefGoogle Scholar
  5. 5.
    Robinson, S.K.: The kinematics of turbulent boundary layer structure. NASA Technical Memorandum, 103859 (1991)Google Scholar
  6. 6.
    Meinhart, C.D.: Investigation of turbulent boundary-layer structure using Particle-Image Velocimetry Thesis, University of Illinois at Urbana-Champaign (1994)Google Scholar
  7. 7.
    Schoppa, W., Hussain, F.: Genesis and dynamics of coherent structures in near-wall turbulence. In: Panton, R. (ed.) Self-sustaining Mechanisms of Wall Turbulence, pp. 385–422. Computational Mechanics Publications (1997)Google Scholar
  8. 8.
    Tomkins, C.D., Adrian, R.J.: Spanwise structure and scale growth in turbulent boundary layers. J. Fluid. Mech. 490, 37–74 (2003)zbMATHCrossRefGoogle Scholar
  9. 9.
    Kähler, C.J.: The significance of coherent flow structures for the turbulent mixing in wall-bounded flows. Dissertation, DLR Forschungsbericht 2004 -24 (2004) ISSN 1434-8454 Google Scholar
  10. 10.
    Stanislas, M., Perret, L., Foucaut, J.-M.: Vortical structures in the turbulent boundary layer: a possible route to a universal representation. J. Fluid Mech. 602, 327–382 (2008)zbMATHCrossRefGoogle Scholar
  11. 11.
    Schröder, A., Geisler, R., Elsinga, G.E., Scarano, F., Dierksheide, U.: Investigation of a turbulent spot using time-resolved tomographic PIV., CD-Rom, Paper 1.4. In: Proceedings, 13th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon (Portugal), June 26-29 (2006)Google Scholar
  12. 12.
    Schröder, A., Kompenhans, J.: Investigation of a turbulent spot using multi-plane stereo PIV. Experiments in Fluids, Selected issue 36, 82–90 (2004)CrossRefGoogle Scholar
  13. 13.
    Schröder, A., Geisler, R., Elsinga, G.E., Scarano, F., Dierksheide, U.: Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV. Experiments in Fluids 44(2), 305–316 (2008)CrossRefGoogle Scholar
  14. 14.
    Elsinga, G.E., Scarano, F., Wieneke, B., van Oudheusden, B.W.: Tomographic particle image velocimetry. Experiments in Fluids 41(15), 933–947 (2006)CrossRefGoogle Scholar
  15. 15.
    Wieneke, B.: Volume self-calibration for Stereo PIV and Tomographic PIV. Experiments in Fluids 45(4), 549–556 (2007)CrossRefGoogle Scholar
  16. 16.
    Ganapathisubramani, B., Longmire, E.K., Marusic, I.: Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 35–46 (2003)zbMATHCrossRefGoogle Scholar
  17. 17.
    Lüthi, B.: Some Aspects of Strain, Vorticity and Material Element Dynamics as Measured with 3D Particle Tracking Velocimetry in a Turbulent Flow. Dissertation (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • A. Schröder
    • 1
  • R. Geisler
    • 1
  • K. Staack
    • 1
  • A. Henning
    • 1
  • B. Wieneke
    • 2
  • G. E. Elsinga
    • 3
  • F. Scarano
    • 3
  • C. Poelma
    • 4
  • J. Westerweel
    • 4
  1. 1.Deutsches Zentrum f. Luft- und Raumfahrt e.V. (DLR)Institut für Aerodynamik und StrömungstechnikGöttingenGermany
  2. 2.LaVision GmbHGöttingenGermany
  3. 3.Department of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Laboratory for Aero- and HydrodynamicsDelft University of TechnologyDelftThe Netherlands

Personalised recommendations