Advertisement

Experimental Flow Studies on Separation and Reattachment in the Vicinity of Sharp,Wedge Shaped Leading Edges at Low Reynolds Numbers

  • A. -M. Schreyer
  • W. Würz
  • E. Krämer
  • A. Talamelli
  • H. Alfredsson
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 112)

Summary

The flow field around sharp leading edges in subsonic, low Reynolds number flow is investigated experimentally. Separation occurs already at small angles of attack. Under certain conditions reattachment takes place and a separation bubble develops. As this influences the lift and drag of an airfoil decisively, the conditions leading to reattachment and the formation of a laminar boundary layer are of special interest. The influences of the Reynolds number, angle of attack and leading edge apex angle on the boundary layer properties are studied by means of hot-wire anemometry, flow visualisation techniques and measurements of the pressure distribution over the leading edge. For a small parameter range, laminar separation followed by laminar reattachment is observed.

Keywords

Wind Tunnel Unmanned Aerial Vehicle Leading Edge Separation Bubble Laminar Separation Bubble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barlow, J.B., Rae, W.H., Pope, A.: Low-Speed Wind Tunnel Testing, 3rd edn. John Wiley & Sons, Chichester (1999)Google Scholar
  2. 2.
    Batchelor, G.K.: An introduction to fluid dynamics. Cambridge Univ. Press, Cambridge (1967)zbMATHGoogle Scholar
  3. 3.
    Bruun, H.H.: Hot-wire anemometry: Principles and signal analysis. Oxford University Press Inc., New York (1995)Google Scholar
  4. 4.
    Chew, Y.T., Khoo, B.C., Li, G.L.: An investigation of wall effects on hot-wire measurements using a bent sublayer probe. Meas. Sci. and Tech. 9, 67–85 (1998)CrossRefGoogle Scholar
  5. 5.
    Gleyzes, C., Cousteix, J., Bonnet, J.L.: Theoretical and numerical study of low Reynolds number transitional separation bubbles. In: Proceedings Conference on Low Reynolds Number Airfoil Aerodynamics UNDAS-CP-77B123, pp. 137–152. University of Notre Dame Indiana, USA (1985)Google Scholar
  6. 6.
    Hall, D.J., Gibbings, J.C.: Influence of stream turbulence and pressure gradient upon boundary layer transition. Mech. Eng. Sci. 14(2), 134–146 (1972)CrossRefGoogle Scholar
  7. 7.
    Häggmark, C.: Investigations of disturbance developing in a laminar separation bubble flow. KTH Stockholm, Department of Mechanics, Diss. (2000)Google Scholar
  8. 8.
    Hamma, W.: Neu entwickelte Tragflügelprofile für Re<105 mit den zugehörigen Polaren und Ergebnissen aus Grenzschichtbeobachtungen an diesen Profilen, Diplomarbeit (Teil 2), IAG, Technische Hochschule Stuttgart (1963)Google Scholar
  9. 9.
    Johansson, A.V., Alfredsson, P.H.: On the structure of turbulent channel flow. J. Fluid Mech. 122, 295–314 (1982)CrossRefGoogle Scholar
  10. 10.
    Lutz, T., Würz, W., Wagner, S.: Numerical Optimisation andWind-Tunnel Testing of Low Reynolds-Number Airfoils. In: Conference on Fixed, Flapping and RotaryWing Vehicles at very Low Reynolds Numbers, Notre Dame, Indiana, June 5-7 (2000)Google Scholar
  11. 11.
    Reichel, V.: Experimentelle Untersuchung zum Einfluss des Nasenradius auf die Eigenschaften von Profilen bei sehr niedrigen Re-Zahlen. Stud. res. proj., IAG (2000)Google Scholar
  12. 12.
    Schmidt, G.S., O’Meara, M.M., Mueller, T.J.: An analysis of a separation bubble transition criterion at low Reynolds numbers. In: Proceedings Conference on Low Reynolds Number Airfoil Aerodynamics UNDAS-CP-77B123, pp. 125–136. University of Notre Dame Indiana, USA (1985)Google Scholar
  13. 13.
    Schreyer, A.-M.: Experimental flow studies on separation and reattachment around sharp, wedge shaped leading edges for low Reynolds numbers, Diplomarbeit, KTH Stockholm und IAG, Universität Stuttgart (2007)Google Scholar
  14. 14.
    Schubauer, G.B., Skramstad, H.K.: Laminar-boundary-layer oscillations and transition on a flat plate, NACA Report No. 909 (1948)Google Scholar
  15. 15.
    Van Ingen, J.L., Boermans, L.M.M.: Research on laminar separation bubbles at Delft University of Technology in relation to low Reynolds number airfoil aerodynamics. In: Proceedings Conference on Low Reynolds Number Airfoil Aerodynamics UNDASCP-77B123, pp. 89–124. University of Notre Dame Indiana, USA (1985)Google Scholar
  16. 16.
    Young, A.D.: Some special boundary layer problems. Zeitschrift fuer Flugwissenschaften und Weltraumforschung 1, 401–414 (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • A. -M. Schreyer
    • 1
  • W. Würz
    • 1
  • E. Krämer
    • 1
  • A. Talamelli
    • 2
  • H. Alfredsson
    • 2
  1. 1.Institut für Aerodynamik und Gasdynamik IAGUniversität StuttgartStuttgartGermany
  2. 2.Kungliga Tekniska Högskolan KTHStockholmSweden

Personalised recommendations