Skip to main content

Global Stability Analysis of Compressible Flow around Swept Wings

  • Conference paper
  • 3556 Accesses

Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM,volume 112)

Summary

The global linear stability of compressible flow in the leading-edge region of a swept wing is studied using an iterative eigenvalue method. This method was implemented via a Jacobian-free framework where direct numerical simulations provide computed flow fields as the required input. It has been found that the investigated leading-edge flow is, over a selected range of flow parameters, most unstable to instabilities of the crossflow type. Our results further confirm that convex leading-edge curvature has a stabilizing influence on this flow.

Keywords

  • Global Stability
  • Krylov Subspace
  • Global Mode
  • Sweep Angle
  • Hessenberg Matrix

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bippes, H.: Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability. Prog. Aero. Sci. 35, 363–412 (1999)

    CrossRef  Google Scholar 

  2. Saric, W.S., Reed, H.L., White, E.B.: Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 35, 413–440 (2003)

    CrossRef  MathSciNet  Google Scholar 

  3. Schlichting, H., Gersten, K.: Boundary Layer Theory. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  4. Lin, R.S., Malik, M.R.: On the stability of attachment-line boundary layers. Part 2. The effect of leading edge curvature. J. Fluid Mech. 333, 125–137 (1997)

    CrossRef  MATH  Google Scholar 

  5. Mack, C.J., Schmid, P.J., Sesterhenn, J.L.: Global stability of swept flow around a parabolic body: connecting attachment-line and crossflow modes. J. Fluid Mech. 611, 205–214 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Theofilis, V., Fedorov, A., Obrist, D., Dallmann, U.C.: The extended Görtler-Hämmerlin model for linear instability in the three-dimensional incompressible swept attachment line boundary layer. J. Fluid Mech. 487, 271–313 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Theofilis, V.: Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aero. Sci. 39, 249–315 (2003)

    CrossRef  Google Scholar 

  8. Edwards, W.S., Tuckerman, L.S., Friesner, R.A., Sorensen, D.C.: Krylov Methods for the Incompressible Navier-Stokes Equations. J. Comput. Phys. 110, 82–102 (1994)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Sesterhenn, J.: A characteristic-type formulation of the Navier-Stokes equations for high-order upwind schemes. Comput. Fluids 30, 37–67 (2001)

    CrossRef  MATH  Google Scholar 

  10. Le Duc, A., Sesterhenn, J., Friedrich, R.: Instabilities in compressible attachment-line boundary layers. Phys. Fluids 28, 044102 (2006)

    CrossRef  MathSciNet  Google Scholar 

  11. Sorensen, D.C.: Numerical methods for large eigenvalue problems. Acta Numer. 11, 519–584 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Mack, C.J., Schmid, P.J.: A preconditioned Krylov technique for global hydrodynamic stability analysis of large-scale compressible flows. J. Comput. Phys. 3, 541–560 (2010)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mack, C.J., Schmid, P.J., Sesterhenn, J. (2010). Global Stability Analysis of Compressible Flow around Swept Wings. In: Dillmann, A., Heller, G., Klaas, M., Kreplin, HP., Nitsche, W., Schröder, W. (eds) New Results in Numerical and Experimental Fluid Mechanics VII. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14243-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14243-7_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14242-0

  • Online ISBN: 978-3-642-14243-7

  • eBook Packages: EngineeringEngineering (R0)