Advertisement

Numerical Investigation of Leading Edge Blowing and Optimization of the Slot Geometry for a Circulation Control Airfoil

  • C. Jensch
  • K. C. Pfingsten
  • R. Radespiel
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 112)

Summary

Numerical simulations for the aerodynamic analysis of a two-dimensional circulation control airfoil at high Reynolds numbers have been carried out. Circulation control systems need a relatively high amount of power to provide the necessary pressurized air. Hence major design paramters as slot height and additional blowing at the nose have been varied to improve the efficiency of the circulation control airfoil. The results show that a significant increase of the efficiency is possible. Additional blowing at the nose protects the leading edge against stalling at lower Mach numbers to enable very high lift coefficients. By variation of the slot height for some configurations the required momentum coefficient of the air jet could be reduced by about 20% at slightly lower lift coefficients.

Keywords

Separation Bubble Maximum Lift High Lift Circulation Control Boundary Layer Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Englar, R.J., Huson, G.G.: Development of Advanced Circulation Control Wing High-Lift Airfoils. AIAA Journal of Aircraft 21(7), 476–483 (1984)CrossRefGoogle Scholar
  2. 2.
    Englar, R.J., Smith, M.J., Kelley, S.M., Rover, R.C.: Application of Circulation Control to Advanced Subsonic Transport Aircraft, Part 1 & 2. AIAA Journal of Aircraft 31(5), 1160–1177 (1994)CrossRefGoogle Scholar
  3. 3.
    Englar, R.J., Williams, R.M.: Design of Circulation Controlled Stern Plane for Submarine Applications. David Tayler Naval Ship R&D Center Report NSRDC/AL-200 (AD901-198) (March 1971)Google Scholar
  4. 4.
    Englar, R.J.: Overview of Circulation Control Pneumatic Aerodynamics: Blown Force and Moment Augmentation and Modification as Applied Primarily to Fixed-Wing Aircraft. In: Applications of Circulation Control Technology, Progress in Astronautics and Aeronautics, AIAA, vol. 214, pp. 23–68 (2006)Google Scholar
  5. 5.
    Gerhold, T.: Overview of the hybrid RANS code TAU. In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design. MEGAFLOW - Numerical Flow Simulation for Aircraft Design, vol. 89, pp. 81–92 (2005)Google Scholar
  6. 6.
    Gersten, K., Löhr, R.: Untersuchungen über die Auftriebserhöhung eines Tragflügels bei gleichzeitigem Ausblasen an der Hinterkantenklappe und an der Profilnase. Institutsbericht 62/34, Institut für Strömungsmechanik der Technischen Universität Braunschweig (1962)Google Scholar
  7. 7.
    Löhr, R., Thomas, F.: Die Auftriebserhöhung eines Rechteckflügels mit Ausblasen an der Profilnase und an der Hinterkantenklappe. Institutsbericht 61/18, Intstitut für Strömungsmechanik der Technischen Universität Braunschweig (1961)Google Scholar
  8. 8.
    Pfingsten, K.-C., Jensch, C., Körber, K.W., Radespiel, R.: Numerical Simulation of the Flow around Circulation Control Airfoils. In: CEAS-2007-377, First CEAS European Air and Space Conference, Berlin, September 10-13 (2007)Google Scholar
  9. 9.
    Pfingsten, K.-C., Radespiel, R., Kamruzzaman, M.: Use of Upper Surface Blowing and Circulation Control for Gapless High-Lift Configurations. In: CEAS/KATnet Conference on Key Aerodynamic Technologies, Bremen, June 20-22 (2005)Google Scholar
  10. 10.
    Pfingsten, K.-C., Radespiel, R.: Numerical Simulation of a Wing with a Gapless High-Lift System Using Circulation Control. In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design, C. Tropea, vol. 96, pp. 71–79. Springer, Berlin (2007)Google Scholar
  11. 11.
    Pott-Pollenske, M., Alvarez-Gonzalez, J., Dobrynski, W.: Effect of Slat Gap on Farfield Radiated Noise and Correlation with Local Flow Characteristics. In: 9th AIAA/CEAS Aeroacoustics Conference, AIAA 2003-3228, Hilton Head, South Carolina / USA, May 12-14 (2003)Google Scholar
  12. 12.
    Shur, M.L., Strelets, M.K., Travin, A.K., Spalart, P.R.: Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction. AIAA Journal 38(5), 784–792 (2000)CrossRefGoogle Scholar
  13. 13.
    Spalart, P.R., Allmaras, S.R.: A One-Equation Turbulence Model for Aerodynamic Flows. AIAA paper 92-0439 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • C. Jensch
    • 1
  • K. C. Pfingsten
    • 1
  • R. Radespiel
    • 1
  1. 1.Institut für StrömungsmechanikTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations